留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑空间中Fan-Browder映射的连续选择定理及其应用

杨明歌 邓磊

杨明歌, 邓磊. 拓扑空间中Fan-Browder映射的连续选择定理及其应用[J]. 应用数学和力学, 2006, 27(4): 439-446.
引用本文: 杨明歌, 邓磊. 拓扑空间中Fan-Browder映射的连续选择定理及其应用[J]. 应用数学和力学, 2006, 27(4): 439-446.
YANG Ming-ge, DENG Lei. Continuous Selection Theorems for Fan-Browder Mappings in Topological Spaces and Their Applications[J]. Applied Mathematics and Mechanics, 2006, 27(4): 439-446.
Citation: YANG Ming-ge, DENG Lei. Continuous Selection Theorems for Fan-Browder Mappings in Topological Spaces and Their Applications[J]. Applied Mathematics and Mechanics, 2006, 27(4): 439-446.

拓扑空间中Fan-Browder映射的连续选择定理及其应用

基金项目: 重庆市科委自然科学基金资助项目(CSTC,2005BB2097)
详细信息
    作者简介:

    杨明歌(1982- ),女,河南偃师人,硕士研究生;邓磊(联系人.Tel:+86-23-68388606;E-mail:denglei@swu.edu.cn)

  • 中图分类号: O177.91

Continuous Selection Theorems for Fan-Browder Mappings in Topological Spaces and Their Applications

  • 摘要: 首先,在不具有任何凸性结构的拓扑空间中引入Fan-Browder映射的概念.然后,证明了一个新的关于Fan-Browder映射的连续选择定理,其中定义域是非紧的,值域是不具有任何凸性结构的拓扑空间的子集.作为应用,给出了一些不动点定理、叠合点定理和一个非空交定理.这些新的概念和定理统一和推广了许多已有的结果.
  • [1] Browder F E.A new generalization of the Schauder fixed point theorem[J].Math Ann,1967,174(2):285—290. doi: 10.1007/BF01364275
    [2] Browder F E.The fixed point theory of multi-valued mappings in topological vector spaces[J].Math Ann,1968,177(2):283—301. doi: 10.1007/BF01350721
    [3] DING Xie-ping,Kim W K,Tan K K.A selection theorem and its applications[J].Bull Austral Math Soc,1992,46(2):205—212. doi: 10.1017/S0004972700011849
    [4] DING Xie-ping.Continuous selection theorem, coincidence theorem and intersection theorem concerning sets with H-convex sections[J].J Austral Math Soc,Ser A,1992,52(1):11—25. doi: 10.1017/S1446788700032833
    [5] Ben-El-Mechaiekh H, Deguire D, Granas A. Points fixes et coincidences pour les functions multivaques(applications de Ky Fan)[J].CR Acad Sci Paris,1982,295:337—340.
    [6] Ben-El-Mechaiekh H, Deguire D, Granas A. Points fixes et coincidences pour les functions multivaques II(applications de type φ et φ*)[J].CR Acad Sci Paris,1982,295:341—381.
    [7] Yannelis N C, Prabhakar N D. Existence of maximal elements and equilibria in linear topological spaces[J].J Math Econom,1983,12(2):233—245. doi: 10.1016/0304-4068(83)90041-1
    [8] Horvath C D. Contractibility and general convexity[J].J Math Anal Appl,1991,156(2):341—357. doi: 10.1016/0022-247X(91)90402-L
    [9] Horvath C D. Extension and selection theorems in topological spaces with a generalized convexity structure[J].Ann Fac Sci Toulouse,1993,2(2):253—269. doi: 10.5802/afst.766
    [10] Park S.Continuous selectin theorems in generalized convex spaces[J].Numer Funct Anal Optimiz,1999,20(5/6): 567—583. doi: 10.1080/01630569908816911
    [11] Park S.New topological versions of the Fan-Browder fixed point theorem[J].Nonlinear Anal,2001,47(1):595—606. doi: 10.1016/S0362-546X(01)00204-8
    [12] WU Xian,SHEN Shi-kai.A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications[J].J Math Anal Appl,1996,197(1):61—74. doi: 10.1006/jmaa.1996.0007
    [13] Park S, Kim H. Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173—187. doi: 10.1006/jmaa.1996.0014
    [14] Park S, Kim H. Foundations of KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(3):551—571. doi: 10.1006/jmaa.1997.5388
    [15] Lin L J, Park S.On some generalized quasi-equilibrium problems[J].J Math Anal Appl,1998,224(1):167—181. doi: 10.1006/jmaa.1998.5964
    [16] YU Zenn Tsuen, LIN Lai-jiu.Continuous selection and fixed point theorems[J].Nonlinear Anal,2003,52(2):445—455. doi: 10.1016/S0362-546X(02)00107-4
    [17] DING Xie-ping,Park J Y.Collectively fixed point theorem and abstract economy in G-convex spaces[J].Numer Funct Anal Optimiz,2002,23(7/8):779—790. doi: 10.1081/NFA-120016269
    [18] DENG Lei,XIA Xia.Generalized R-KKM theorems in topological space and their applications[J].J Math Anal Appl,2003,285(2):679—690. doi: 10.1016/S0022-247X(03)00466-9
    [19] Horvath C D.Contractibility and generalized convexity[J].J Math Anal Appl,1991,156(2):341—357. doi: 10.1016/0022-247X(91)90402-L
    [20] Park S.Fixed points of admissible maps on generalized convex spaces[J].J Korean Math Soc,2000,37(4):885—899.
    [21] DING Xie-ping.Coincidence theorems involving better admissible mappings and Φ-mappings in G-convex spaces[J].四川师范大学学报(自然科学版),2002,25(3):221—225.
    [22] DING Xie-ping. Coincidence theorems in topological spaces and their applications[J].Appl Math Lett,1999,12(7):99—105. doi: 10.1016/S0893-9659(99)00108-1
  • 加载中
计量
  • 文章访问数:  2384
  • HTML全文浏览量:  165
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-09
  • 修回日期:  2005-12-16
  • 刊出日期:  2006-04-15

目录

    /

    返回文章
    返回