留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大范围运动刚体上矩形薄板力学行为分析

肖世富 陈滨

肖世富, 陈滨. 大范围运动刚体上矩形薄板力学行为分析[J]. 应用数学和力学, 2006, 27(4): 495-504.
引用本文: 肖世富, 陈滨. 大范围运动刚体上矩形薄板力学行为分析[J]. 应用数学和力学, 2006, 27(4): 495-504.
XIAO Shi-fu, CHEN Bin. Dynamic Behavior of a Thin Rectangular Plate Attached to a Moving Rigid[J]. Applied Mathematics and Mechanics, 2006, 27(4): 495-504.
Citation: XIAO Shi-fu, CHEN Bin. Dynamic Behavior of a Thin Rectangular Plate Attached to a Moving Rigid[J]. Applied Mathematics and Mechanics, 2006, 27(4): 495-504.

大范围运动刚体上矩形薄板力学行为分析

基金项目: 国家自然科学基金资助项目(10272002);教育部博士点基金资助项目(20020001032)
详细信息
    作者简介:

    肖世富(1970- ),男,四川人,副研究员,博士(联系人.Tel:+86-816-2485465;Fax:+86-816-2281485;E-mail:sfxiao@pku.org.cn)

  • 中图分类号: O231;O317

Dynamic Behavior of a Thin Rectangular Plate Attached to a Moving Rigid

  • 摘要: 采用Hamilton变分原理建立了大范围运动平板的动力学模型.从理论上证明了不同大范围运动状态下平板中既可存在动力刚化效应,也可存在动力软化效应,且动力软化效应还可使板的平衡状态发生分岔而失稳.采用假设模态法验证了理论分析结果并得到了分岔临界值和近似后屈曲解.
  • [1] Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance, Control and Dynamics,1987,10(2):139—151. doi: 10.2514/3.20195
    [2] Bloch A M.Stability analysis of a rotating flexible system[J].Acta Applicandae Mathematicae,1989,15:211—234. doi: 10.1007/BF00047531
    [3] Wallrapp O.Linearized flexible multibody dynamics including geometric stiffening effects[J].Mech Strut & Mach,1991,19:385—409.
    [4] Haering W J,Ryan R R.New formulation for flexible beams undergoing large overall motions[J].Journal of Guidance, Control and Dynamics,1994,17(1):76—83. doi: 10.2514/3.21161
    [5] Ryu J,Kim S S,Kim S S.A general approach to stress stiffening effects on flexible multibody dynamic systems[J].Mech Strut & Mach,1994,22(2):157—180.
    [6] Zhang D J,Liu C O, Huston R L.On dynamics stiffening of an arbitary flexible body with large overall motion:an integrated approach[J].Mech Strut & Mach,1995,23:419—438.
    [7] Zhang D J,Huston R L.On dynamic stiffening of flexible bodies having high angular velocity[J].Mech Strut & Mach,1996,24:313—329.
    [8] Banerjee A K,Dickens J M.Dynamics of an arbitrary flexible body in large rotation and translation[J].Journal of Guidance, Control and Dynamics,1996,19:221—227.
    [9] XIAO Shi-fu,CHEN Bin.Dynamic characteristic and stability analysis of a beam mounted on a moving rigid body[J].Archive of Applied Mechanics,2005,74(5/6):415—426.
    [10] XIAO Shi-fu,CHEN Bin.Modelling and bifurcation analysis of internal cantilever beam system on a steadily rotating ring[J].Science in China,Series A,1998,41(5):527—533.
    [11] 肖世富,陈滨.中心刚体-外Timoshenko梁系统的建模与分岔特性研究[J].应用数学和力学,1999,20(12):1286—1290.
    [12] XIAO Shi-fu,DU Qiang,CHEN Bin,et al.Modal test and analysis of cantilever beam with tip mass[J].Acta Mechanica Sinica, English Series,2002,18:407—413.
    [13] XIAO Shi-fu,CHEN Bin,DU Qiang.On dynamic behavior of a cantilever beam with tip mass in a centrifugal field[J].Mechanics Based Design of Structures and Machines,2005,33(1):79—98. doi: 10.1081/SME-200048325
    [14] 肖世富,陈滨.一类刚-柔耦合系统柔体模态分析的特征[J].中国空间科学技术,1998,18(4):8—13.
    [15] Banerjee A K,Kane T R.Dynamics of a plate in large overall motion[J].J Appl Mech,1989,56:887—892. doi: 10.1115/1.3176187
    [16] CHANG Bi-lin,Shabana A A.Nonlinear finite element formulation for the large displacement analysis of plates[J].J Appl Mech,1990,57:707—718. doi: 10.1115/1.2897081
    [17] Boutaghou Z E, Erdman A G, Stolarski H K.Dynamics of flexible beams and plates in large overall motions[J].J Appl Mech,1992,59:991—999. doi: 10.1115/1.2894071
    [18] Yoo H H,Pierre C.Modal characteristic of a rotating rectangular cantilever plate[J].J Sound and Vibration,2003,259(1):81—96.
    [19] Musat S D,Epureanu B I.Dynamics and stability of a multi-body system with respect to a rotating reference system[J].Transactions of the Canadian Society for Mechanical Engineering,2002,26(1):57—73.
  • 加载中
计量
  • 文章访问数:  3174
  • HTML全文浏览量:  173
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-12-03
  • 修回日期:  2005-12-19
  • 刊出日期:  2006-04-15

目录

    /

    返回文章
    返回