留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电压磁复合材料中一对平行裂纹对弹性波的散射

周振功 王彪

周振功, 王彪. 压电压磁复合材料中一对平行裂纹对弹性波的散射[J]. 应用数学和力学, 2006, 27(5): 519-526.
引用本文: 周振功, 王彪. 压电压磁复合材料中一对平行裂纹对弹性波的散射[J]. 应用数学和力学, 2006, 27(5): 519-526.
ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Parallel Symmetry Cracks in Magneto-Electro-Elastic Composites Under Harmonic Anti-Plane Waves[J]. Applied Mathematics and Mechanics, 2006, 27(5): 519-526.
Citation: ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Parallel Symmetry Cracks in Magneto-Electro-Elastic Composites Under Harmonic Anti-Plane Waves[J]. Applied Mathematics and Mechanics, 2006, 27(5): 519-526.

压电压磁复合材料中一对平行裂纹对弹性波的散射

基金项目: 国家自然科学基金资助项目(50232030;10172030;10572043);黑龙江省杰出青年基金资助项目(JC04-08);黑龙江省自然科学基金资助项目(A0301)
详细信息
    作者简介:

    周振功(1963- ),河南省镇平县人,教授,博士,博士生导师(联系人:Tel:+86-45186402396;Fax:+86-451-86402386;E-mail:zhouzhg@hit.edu.cn).

  • 中图分类号: O346.58

Dynamic Behavior of Two Parallel Symmetry Cracks in Magneto-Electro-Elastic Composites Under Harmonic Anti-Plane Waves

  • 摘要: 利用Schmidt方法对压电压磁复合材料中一对平行对称裂纹对反平面简谐波的散射问题进行了分析,借助富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程.在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式,最终获得了应力强度因子、电位移强度因子、磁通量强度因子三者之间的关系.结果表明,压电压磁复合材料中平行裂纹动态反平面断裂问题的应力奇异性与一般弹性材料中的动态反平面断裂问题的应力奇异性相同,同时讨论了裂纹间的屏蔽效应.
  • [1] Wu T L,Huang J H.Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases[J].International Journal of Solids and Structures,2000,37(21):2981—3009. doi: 10.1016/S0020-7683(99)00116-X
    [2] Sih G C, Song Z F, Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite[J].Theoretical and Applied Fracture Mechanics,2003,39(3):209—227.
    [3] Wang B L,Mai Y W.Crack tip field in piezoelectric/piezomagnetic media[J].European Journal of Mechanics A/Solid,2003,22(4):591—602. doi: 10.1016/S0997-7538(03)00062-7
    [4] Gao C F,Tong P, Zhang T Y.Interfacial crack problems in magneto-electroelastic solids[J].International Journal of Engineering Science,2003,41(18):2105—2121. doi: 10.1016/S0020-7225(03)00206-4
    [5] Liu J X, Liu X L,Zhao Y B.Green's functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack[J].International Journal of Engineering Science,2001,39(12):1405—1418. doi: 10.1016/S0020-7225(01)00005-2
    [6] Gao C F, Kessler H, Balke H.Crack problems in magnetoelectroelastic solids, Part Ⅰ:exact solution of a crack[J].International Journal of Engineering Science,2003,41(9):969—981. doi: 10.1016/S0020-7225(02)00323-3
    [7] Wang B L,Mai Y W.Fracture of piezoelectromagnetic materials[J].Mechanics Research Communications,2004,31(1):65—73. doi: 10.1016/j.mechrescom.2003.08.002
    [8] Van Suchtelen J.Product properties: a new application of composite materials[J].Phillips Research Reports,1972,27(1):28—37.
    [9] Morse P M, Feshbach H.Methods of Theoretical Physics[M].New York:McGraw-Hill,1958,926—940.
    [10] Soh A K,Fang D N,Lee K L.Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading[J].European Journal of Mechanics. A/Solid,2000,19(10):961—977. doi: 10.1016/S0997-7538(00)01107-4
    [11] Gradshteyn I S, Ryzhik I M.Table of Integrals, Series and Products[M].New York:Academic Press,1980,1035—1037.
    [12] Erdelyi A.Tables of Integral Transforms[M].New York:McGraw-Hill,1954,34—89.
    [13] 周振功,王彪.双Ⅰ-型裂纹断裂动力学问题的非局部理论解[J].应用数学和力学,2001,22(7):682—690.
    [14] 周振功,王彪.压电材料中两平行对称可导通裂纹断裂性能分析[J].应用数学和力学,2002,23(12):1211—1219.
    [15] Ratwani M, Gupta G D.Interaction between parallel cracks in layered composites[J].International Journal of Solids and Structures,1974,10(7):701—708. doi: 10.1016/0020-7683(74)90034-1
  • 加载中
计量
  • 文章访问数:  2552
  • HTML全文浏览量:  134
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-07-31
  • 修回日期:  2006-01-10
  • 刊出日期:  2006-05-15

目录

    /

    返回文章
    返回