Multiresolution Symplectic Scheme for Wave Propagation in Complex Media
-
摘要: 在哈密顿体系中引入小波分析,利用辛格式和紧支正交小波对波动方程的时、空间变量进行联合离散近似,构造了多尺度辛格式——MSS(Multiresolution Symplectic Scheme).将地震波传播问题放在小波域哈密顿体系下的多尺度辛几何空间中进行分析,利用小波基与辛格式的特性,有效改善了计算效率,可解决波动力学长时模拟追踪的稳定性与逼真性.Abstract: A fast adaptive symplectic algorithm named multiresolution symplectic scheme (MSS) was first presented to solve the problem of the wave propagation in complex media, using the symplectic scheme and Daubechies. compactly supported orthogonal wavelet transform to respectively discretise the time and space dimension of wave equation. The problem was solved in multiresolution symplectic geometry space under the conservative Hamiltonian system rather than the traditional Lagrange system. Due to the fascinating properties of the wavelets and symplectic scheme, MSS is a promising method because of little computational burden, robustness and reality of long-time simulation.
-
Key words:
- wavelet transform /
- multiresolution /
- symplectic /
- wave propagation
-
[1] 钟万勰.弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995. [2] XU Xin-sheng, ZHONG Wan-xie, ZHANG Hong-wu.The Saint-Venant problem and principle in elasticity[J].Int J Solids Structures,1997,34(22):2815—2827. doi: 10.1016/S0020-7683(96)00198-9 [3] Hirono I, Lui W W,Yokoyama K. Time-domain simulation of electromagnetic field using a symplectic integrator[J].IEEE Trans Microwave and Guided Wave Lett,1997,7(9):79—281. [4] 马坚伟,徐新生,杨慧珠,等. 平面流体扰动与哈密顿体系[J].应用力学学报, 2001, 18(4): 82—86. [5] Beylkin G. On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer Anal,1992,29(6):1716—1740. doi: 10.1137/0729097 [6] MA Jian-wei,ZHU Ya-ping,YANG Hui-zhu.Multiscale-combined seismic waveform inversion using orthogonal wavelet transform[J].Electron Lett,2001,37(4):261—262. doi: 10.1049/el:20010131 [7] 马坚伟,杨慧珠.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415—1420. [8] Dahmen W. Wavelet methods for PDEs-some recent developments [J].J Comput Appl Math,2001,128(1/2):133—185. doi: 10.1016/S0377-0427(00)00511-2 [9] Holmstrom M. Solving hyperbolic PDEs using interpolating wavelets [J]. SIAM J Sci Comput,1999,21(2): 405—420. doi: 10.1137/S1064827597316278 [10] Vasilyev O, Bowman C. Second-generation wavelet collocation method for the solution of PDEs[J].J Comput Phys,2000,165(2): 660—693. doi: 10.1006/jcph.2000.6638 [11] Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].J Comput Phys,2000,157(2): 473—499. doi: 10.1006/jcph.1999.6372
计量
- 文章访问数: 2624
- HTML全文浏览量: 160
- PDF下载量: 562
- 被引次数: 0