留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具共振条件下的高阶多点边值问题解的存在性

林晓洁 杜增吉 葛渭高

林晓洁, 杜增吉, 葛渭高. 具共振条件下的高阶多点边值问题解的存在性[J]. 应用数学和力学, 2006, 27(5): 624-630.
引用本文: 林晓洁, 杜增吉, 葛渭高. 具共振条件下的高阶多点边值问题解的存在性[J]. 应用数学和力学, 2006, 27(5): 624-630.
LIN Xiao-jie, DU Zeng-ji, GE Wei-gao. Existence of Solutions for Higher Order Multi-Point Boundary Value Problems at Resonance[J]. Applied Mathematics and Mechanics, 2006, 27(5): 624-630.
Citation: LIN Xiao-jie, DU Zeng-ji, GE Wei-gao. Existence of Solutions for Higher Order Multi-Point Boundary Value Problems at Resonance[J]. Applied Mathematics and Mechanics, 2006, 27(5): 624-630.

具共振条件下的高阶多点边值问题解的存在性

基金项目: 国家自然科学基金资助项目(10371006)
详细信息
    作者简介:

    林晓洁(1973- ),女,江苏徐州人,讲师(联系人.Tel:+86-516-83798976;E-mail:linxiaojie1973@163.com);杜增吉(1972- ),男,江苏邳州人,博士(Tel:+86-10-68912581;E-mail:duzengji@163.com).

  • 中图分类号: O175.8

Existence of Solutions for Higher Order Multi-Point Boundary Value Problems at Resonance

  • 摘要: 利用重合度理论研究一类高阶常微分方程多点边值问题,在共振条件下,通过给出非线性项满足的一些条件,运用有效的先验界估计,得到了一些新的解的存在性结果.
  • [1] Feng W,Webb J R L.Solvability of m-point boundary value problems with nonlinear growth[J].Journal of Mathematical Analysis and Applications,1997,212(2):467—480. doi: 10.1006/jmaa.1997.5520
    [2] DU Zeng-ji,GE Wei-gao,ZHOU Ming-ru.Singular perturbations for third-order nonlinear multi-point boundary value problem[J].Journal of Differential Equations,2005,218(1):69—90. doi: 10.1016/j.jde.2005.01.005
    [3] DU Zeng-ji,XUE Chun-yan,GE Wei-gao.Multiple solutions for three-point boundary value problem with nonlinear terms depending on the first order derivative[J].Archiv der Mathematik,2005,84(4):341—349. doi: 10.1007/s00013-004-1196-7
    [4] DU Zeng-ji,XUE Chun-yan,GE Wei-gao.On eigenvalue intervals for discrete second order boundary value problem[J].Acta Mathematicate Applicatae Sinica, English Series,2005,21(1):105—114. doi: 10.1007/s10255-005-0221-3
    [5] MA Ru-yun,Nelson Castaneda.Existence of solutions of nonlinear m-point boundary value problems[J].Journal of Mathematical Analysis and Applications,2001,256(2):556—567. doi: 10.1006/jmaa.2000.7320
    [6] Gupta C P.A generalized multi-point boundary value problem for second order ordinary differential equations[J].Applied Mathematics and Computation,1998,89(1):133—146. doi: 10.1016/S0096-3003(97)81653-0
    [7] LIU Bin.Solvability of multi-point boundary value problem at resonance(Ⅱ)[J].Applied Mathematics and Computation,2003,136(2):353—377. doi: 10.1016/S0096-3003(02)00050-4
    [8] LIU Bin,YU Jian-she.Solvability of multi-point boundary value problem at resonance (Ⅲ)[J].Applied Mathematics and Computation,2002,129(1):119—143. doi: 10.1016/S0096-3003(01)00036-4
    [9] Gupta C P.A second order m-point boundary value problem at resonance[J].Nonlinear Analysis: Theory, Methods & Applications,1995,24(10):1483—1489.
    [10] Nagle R K,Pothoven K L.On a third-order nonlinear boundary value problems at resonance[J].Journal of Mathematical Analysis and Applications,1995,195(1):148—159. doi: 10.1006/jmaa.1995.1348
    [11] DU Zeng-ji,LIN Xiao-jie,GE Wei-gao.On a third order multi-point boundary value problem at resonance[J].Journal of Mathematical Analysis and Applications,2005,302(1):217—229. doi: 10.1016/j.jmaa.2004.08.012
    [12] DU Zeng-ji,GE Wei-gao,LIN Xiao-jie.Existence of solutions for a class of third-order nonlinear boundary value problems [J].Journal of Mathematical Analysis and Applications, 2004,294(1):104—112. doi: 10.1016/j.jmaa.2004.02.001
    [13] Mawhin J.Topological degree methods in nonlinear boundary value problems[A].In:Nsfcbms Regional Conference Series in Mathematics[C].Providence.Rhode Island:American Mathematical Society,U S A,1979.
  • 加载中
计量
  • 文章访问数:  2211
  • HTML全文浏览量:  99
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-02-01
  • 修回日期:  2006-01-17
  • 刊出日期:  2006-05-15

目录

    /

    返回文章
    返回