留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Banach空间无界域上二阶脉冲积分微分方程的解

陈芳启 田瑞兰 陈予恕

陈芳启, 田瑞兰, 陈予恕. Banach空间无界域上二阶脉冲积分微分方程的解[J]. 应用数学和力学, 2006, 27(6): 637-645.
引用本文: 陈芳启, 田瑞兰, 陈予恕. Banach空间无界域上二阶脉冲积分微分方程的解[J]. 应用数学和力学, 2006, 27(6): 637-645.
CHEN Fang-qi, TIAN Rui-lan, CHEN Yu-shu. Solutions for Second Order Impulsive Integro-Differential Equation on Unbounded Domains in Banach Spaces[J]. Applied Mathematics and Mechanics, 2006, 27(6): 637-645.
Citation: CHEN Fang-qi, TIAN Rui-lan, CHEN Yu-shu. Solutions for Second Order Impulsive Integro-Differential Equation on Unbounded Domains in Banach Spaces[J]. Applied Mathematics and Mechanics, 2006, 27(6): 637-645.

Banach空间无界域上二阶脉冲积分微分方程的解

基金项目: 国家自然科学基金资助项目(10572057)
详细信息
    作者简介:

    陈芳启(1963- ),男,山东人,教授,博士,博士生导师(联系人.Tel:+86-25-84894953;E-mai:cfqyyf@eyou.com).

  • 中图分类号: O175.6

Solutions for Second Order Impulsive Integro-Differential Equation on Unbounded Domains in Banach Spaces

  • 摘要: 在比较宽松的条件下,研究了Banach空间中二阶脉冲积分微分方程在正半实轴上具有无穷个脉冲点的初值问题的解的存在性.利用递归法、Tonelii序列和局部凸拓扑,建立了新的存在性定理,对郭大钧的结果做了本质改进.
  • [1] GUO Da-jun.Second order impulsive integro-differential equations on unbounded domains in a Banach space[J].Nonlinear Anal,1999,35(4):413—423. doi: 10.1016/S0362-546X(97)00564-6
    [2] GUO Da-jun.Impulsive integral equations in Banach spaces and applications[J]. J Appl Math Stochastic Anal,1992,5(1):111—122. doi: 10.1155/S104895339200008X
    [3] Martin R H.Nonlinear Operators and Differential Equations in Banach Space[M].New York:J Wiley and Sons,1976,66—67.
    [4] 刘立山.Banach空间非线性混合型微分-积分方程的解[J].数学学报,1995,38(6):721—731.
    [5] GUO Da-jun.Initial value problems for second order impulsive integro-differential equations in Banach spaces[J].Chinese Ann Math,Ser B,1997,18(4):439—448.
    [6] GUO Da-jun.Nonlinear impulsive Volterra integral equations in Banach spaces and applications[J].J Appl Math Stochastic Anal,1993,6(1):35—48. doi: 10.1155/S1048953393000048
    [7] CHEN Fang-qi.Existence of solutions for nonlinear impulsive Volterra integral equations in Banach spaces[J].Dynamic of Continuous, Discrete and Impulsive System,2002,9(2):429—438.
    [8] GUO Da-jun. Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces[J].J Math Anal Appl,1994,181(2):407—421. doi: 10.1006/jmaa.1994.1031
    [9] Deimling K.Nonlinear Functional Analysis[M].Berlin:Springer-Verlag,1985,218—221.
  • 加载中
计量
  • 文章访问数:  2355
  • HTML全文浏览量:  103
  • PDF下载量:  581
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-03-15
  • 修回日期:  2006-02-28
  • 刊出日期:  2006-06-15

目录

    /

    返回文章
    返回