留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条状功能梯度材料中偏心裂纹对反平面简谐波的散射问题

李琳 周振功 王彪

李琳, 周振功, 王彪. 条状功能梯度材料中偏心裂纹对反平面简谐波的散射问题[J]. 应用数学和力学, 2006, 27(6): 646-654.
引用本文: 李琳, 周振功, 王彪. 条状功能梯度材料中偏心裂纹对反平面简谐波的散射问题[J]. 应用数学和力学, 2006, 27(6): 646-654.
LI Lin, ZHOU Zhen-gong, WANG Biao. Scattering of Anti-Plane Shear Waves in a Functionally Graded Material Strip With an Off-Center Vertical Crack[J]. Applied Mathematics and Mechanics, 2006, 27(6): 646-654.
Citation: LI Lin, ZHOU Zhen-gong, WANG Biao. Scattering of Anti-Plane Shear Waves in a Functionally Graded Material Strip With an Off-Center Vertical Crack[J]. Applied Mathematics and Mechanics, 2006, 27(6): 646-654.

条状功能梯度材料中偏心裂纹对反平面简谐波的散射问题

基金项目: 国家自然科学基金资助项目(1057204310572155);黑龙江省杰出青年基金资助项目(JC04-08)
详细信息
    作者简介:

    李琳(1977- ),博士;周振功(联系人.Tel:+86_451_86402396;Fax:+86_451_86402386;E_mail:zhouzhg@hit.edu.cn).

  • 中图分类号: O346.8

Scattering of Anti-Plane Shear Waves in a Functionally Graded Material Strip With an Off-Center Vertical Crack

  • 摘要: 利用Schmidt方法研究了条状功能梯度材料中偏心裂纹对反平面简谐波的散射问题,裂纹垂直于条状功能梯度材料的边界.通过Fourier变换,问题可以转换为对一对未知变量是裂纹表面位移差的对偶积分方程求解.为了求解对偶积分方程,把裂纹表面的位移差展开为Jacobi多项式级数形式,进而得到了功能梯度参数、裂纹位置以及入射波频率对应力强度因子影响的规律.
  • [1] Erdogan F,Wu B H. The surface crack problem for a plate with functionally graded properties[J].Journal of Applied Mechanics,1997,64(3):449—456. doi: 10.1115/1.2788914
    [2] Delale F,Erdogan F.On the mechanical modeling of the interfacial region in bonded half-planes[J].ASME Journal of Applied Mechanics,1988,55(2):317—324. doi: 10.1115/1.3173677
    [3] Jin Z H, Batra R C.Interface cracking between functionally graded coating and a substrate under antiplane shear[J].International Journal of Engineering Science,1996,34(15):1705—1716. doi: 10.1016/S0020-7225(96)00055-9
    [4] Bao G, Cai H. Delamination cracking in functionally graded coating/metal substrate systems[J].Acta Materialia,1997,45(3):1055—1066. doi: 10.1016/S1359-6454(96)00232-7
    [5] Erdogan F, Wu H B. Crack problems in FGM layer under thermal stress[J].Journal of Thermal Stress,1996,19(3):237—265. doi: 10.1080/01495739608946172
    [6] Parameswaran V,Shukla A.Crack-tip stress fields for dynamic fracture in functionally graded materials[J].Mechanics of Materials,1999,31(9):579—596. doi: 10.1016/S0167-6636(99)00025-3
    [7] WANG Bao-lin,HAN Jie-cai,DU Shan-yi.Crack problem for non-homogeneous composite materials subjected to dynamic loading[J].International Journal of Solids and Structures,2000,37(9):1251—1274. doi: 10.1016/S0020-7683(98)00292-3
    [8] Parameswaran V, Shukla A. Dynamic fracture of a functionally graded material having discrete property variation[J].Journal of Materials Science,1998,31(6):1641—1657.
    [9] Morse P M, Feshbach H.Methods of Theoretical Physics[M].Vol 1.New York:McGraw-Hill,1958.
    [10] Srivastava K N, Palaiya K N, Karaulia D S. Interaction of shear waves with two coplanar Griffith cracks situated in an infinitely long elastic strip[J].International Journal of Fracture,1983,23(1):3—14. doi: 10.1007/BF00020153
    [11] Chen E P. Impact response of a finite crack in a finite strip under anti-plane shear[J].Engineering Fracture Mechanics,1977,9(4):719—724. doi: 10.1016/0013-7944(77)90084-4
    [12] Gradshteyn I S, Ryzhik I M.Table of Integrals, Series and Products[M].New York:Academic Press,1980,923—967.
    [13] Erdelyi A.Tables of Integral Transforms[M].Vol 1.New York:McGraw-Hill,1954,68—105.
    [14] ZHOU Zhen-gong,HAN Jie-cai,DU Shan-yi.Two collinear Griffith cracks subjected to uniform tension in infinitely long strip[J].International Journal of Solids and Structures,1999,36(4):5597—5609. doi: 10.1016/S0020-7683(98)00250-9
    [15] 周振功,王彪.位于两不同正交各向异性半平面间张开型界面裂纹的性能分析[J].应用数学和力学,2004,25(7):667—676.
    [16] 周振功,王彪.压电材料中两平行对称可导通裂纹断裂性能分析[J].应用数学和力学,2002,23(12):1211—1219.
  • 加载中
计量
  • 文章访问数:  2401
  • HTML全文浏览量:  117
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-10-15
  • 修回日期:  2006-02-26
  • 刊出日期:  2006-06-15

目录

    /

    返回文章
    返回