留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆虫翼拍动中受载变形的粘弹性本构模型

鲍麟 胡劲松 余永亮 程鹏 续伯钦 童秉纲

鲍麟, 胡劲松, 余永亮, 程鹏, 续伯钦, 童秉纲. 昆虫翼拍动中受载变形的粘弹性本构模型[J]. 应用数学和力学, 2006, 27(6): 655-662.
引用本文: 鲍麟, 胡劲松, 余永亮, 程鹏, 续伯钦, 童秉纲. 昆虫翼拍动中受载变形的粘弹性本构模型[J]. 应用数学和力学, 2006, 27(6): 655-662.
BAO Lin, HU Jin-song, YU Yong-liang, CHENG Peng, XU Bo-qing, TONG Bing-gang. Viscoelastic Constitutive Model Related to Deformation of Insect Wing Under Loading in Flapping Motion[J]. Applied Mathematics and Mechanics, 2006, 27(6): 655-662.
Citation: BAO Lin, HU Jin-song, YU Yong-liang, CHENG Peng, XU Bo-qing, TONG Bing-gang. Viscoelastic Constitutive Model Related to Deformation of Insect Wing Under Loading in Flapping Motion[J]. Applied Mathematics and Mechanics, 2006, 27(6): 655-662.

昆虫翼拍动中受载变形的粘弹性本构模型

基金项目: 国家自然科学基金资助项目(903050091023201010072066);中国科学院创新项目(KJCX-SW-L04,KJCX2-SW-L2)
详细信息
    作者简介:

    鲍麟(1979- ),男,江苏徐州人,在读博士生(Tel:+86-10-88256133;E-mail:l.bao@263.net);童秉纲(联系人.Tel:+86-10-88256264;Fax:+86-10-88256133).

  • 中图分类号: O345;Q66

Viscoelastic Constitutive Model Related to Deformation of Insect Wing Under Loading in Flapping Motion

  • 摘要: 昆虫翼拍动受载时发生被动变形,被看作为有助于改善飞行性能的机制之一.决定这种被动变形大小的一个关键因素是昆虫翼的材料本构关系,至今缺乏研究.基于蜻蜓翼(离体)的应力松弛实验和模型翼拍动时受载变形的有限元数值分析,揭示了粘弹性本构关系是昆虫翼材料性能的合理描述,并研究了粘弹性参数对被动变形的影响.
  • [1] Ellington C P,Van den Berg C,Willmott A P,et al.Leading-edge vortices in insect flight[J].Nature,1996,384(6610):626—630. doi: 10.1038/384626a0
    [2] Dickinson M H,Lehmann F-O,Sane S P. Wing rotation and the aerodynamic basis of insect flight[J].Science,1999,284(5422):1954—1960. doi: 10.1126/science.284.5422.1954
    [3] SUN Mao,TANG Jian.Lift and power requirements of hovering flight in Drosophila virilis[J].J Exp Biol,2002,205(16):2413—2427.
    [4] YU Yong-liang,TONG Bing-gang.A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight[J].Acta Mech Sinica,2005,21(3):218—227. doi: 10.1007/s10409-005-0032-z
    [5] Ennos A R.The kinematics and aerodynamics of the free flight of diptera[J].J Exp Biol,1989,142(1):49—85.
    [6] Willmott A P,Ellington C P.The mechanics of flight in the hawkmoth Manduca sexta Ⅰ—Kinematics of hovering and forward flight[J].J Exp Biol,1997,200(21):2705—2722.
    [7] WANG Hao,ZENG Li-jiang,LIU Hao,et al.Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies[J].J Exp Biol,2003,206(4):745—757. doi: 10.1242/jeb.00183
    [8] Mueller T J.Fixed and Flapping Wing Dynamics for MAV Applications[M].AIAA Progress in Astron and Aeron,Massachusetts:AIAA,2001,195.
    [9] Alexander R M.Winging their way[J].Nature,2000,405(6782):17—18.
    [10] Wootton R J.From insects to microveechicles[J].Nature,2000,403(6766):144—145. doi: 10.1038/35003074
    [11] Dudley R. Unsteady aerodynamics[J].Science,1999,284(5422):1937—1938. doi: 10.1126/science.284.5422.1937
    [12] 童秉纲,陆夕云.关于飞行和游动的生物力学研究[J].力学进展,2004,34(1):1—8.
    [13] Wootton R J.Functional morphology of insect wings[J].Annu Rev Entomol,1992,37:113—140. doi: 10.1146/annurev.en.37.010192.000553
    [14] Antonia B K,Ute P,Werner N.Biomechanical aspects of the insect wing: an analysis using the finite element method[J].Computers in Biology and Medicine,1998,28(4):423—437. doi: 10.1016/S0010-4825(98)00018-3
    [15] Herbert R C,Young P G,Smith C W,et al.The hind wing of the desert locust (Schistocerca gregaria Forskal)Ⅲ—A finite element analysis of a deployable structure[J].J Exp Biol,2000,203(19):2945—2955.
    [16] Combes S A,Daniel T L.Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta[J].J Exp Biol,2003,206(17):2999—3006. doi: 10.1242/jeb.00502
    [17] Vincent J F V.Insect cuticle: a paradigm for natural composites[J].Symp Soc Exp Biol,1980,34(1):183—210.
    [18] Ellington C P. The aerodynamics of hovering insect flight Ⅱ—Morphological parameters[J].Phil Trans R Soc Lond B,1984,305(1122):17—40. doi: 10.1098/rstb.1984.0050
    [19] Wootton R J,Evans K E,Herbert R,et al. The hind wing of the desert locust (Schistocerca gregaria Forskal) Ⅰ—Functional morphology and mode of operation[J].J Exp Biol,2000,203(19):2921—2931.
    [20] Combes S A,Daniel T L.Flexural stiffness in insect wings Ⅰ—Scaling and the influence of wing venation[J].J Exp Biol,2003,206(17):2979—2987. doi: 10.1242/jeb.00523
    [21] 周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [22] Newman D J S,Wootton R J. An approach to the mechanics of pleating in dragonfly wings[J].J Exp Biol,1986,126(1):361—372.
    [23] Smith C W,Herbert R H,Wootton R J,et al.The hind wing of the desert locust (Schistocerca gregaria Forskal) Ⅱ—Mechanical properties and functioning of the membrane[J].J Exp Biol,2000,203(19):2933—2943.
    [24] Cheng J Y,Pedley T J,Altringham J D.A continuous dynamic beam model for swimming fish[J].Phil Trans R Soc Lond B,1998,353(1371):981—997. doi: 10.1098/rstb.1998.0262
  • 加载中
计量
  • 文章访问数:  2567
  • HTML全文浏览量:  56
  • PDF下载量:  605
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-17
  • 修回日期:  2006-02-10
  • 刊出日期:  2006-06-15

目录

    /

    返回文章
    返回