留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特殊坐标系中特殊非牛顿流边界层方程的相似解

M.禹儒索一

M.禹儒索一. 特殊坐标系中特殊非牛顿流边界层方程的相似解[J]. 应用数学和力学, 2004, 25(5): 535-541.
引用本文: M.禹儒索一. 特殊坐标系中特殊非牛顿流边界层方程的相似解[J]. 应用数学和力学, 2004, 25(5): 535-541.
Muhammet Yürüsoy. Similarity Solutions of Boundary Layer Equations for a Special Non-Newtonian Fluid in a Special Coordinate System[J]. Applied Mathematics and Mechanics, 2004, 25(5): 535-541.
Citation: Muhammet Yürüsoy. Similarity Solutions of Boundary Layer Equations for a Special Non-Newtonian Fluid in a Special Coordinate System[J]. Applied Mathematics and Mechanics, 2004, 25(5): 535-541.

特殊坐标系中特殊非牛顿流边界层方程的相似解

详细信息
  • 中图分类号: O357.4

Similarity Solutions of Boundary Layer Equations for a Special Non-Newtonian Fluid in a Special Coordinate System

  • 摘要: 给出了在一个特殊坐标系中三阶流体的二维定常运动方程组.该坐标系中由无粘流体的势流确定,即以环绕任意物体的非粘性流动的流线为 -坐标,速度势线为ψ -坐标,构成正交曲线坐标系.结果表明,边界层方程与浸没在流体中的物体的形状无关.第一次近似假定第二梯度项与粘性项和第三梯度项相比,可以忽略不计.第二梯度项的存在,将防碍第三梯度流相似解的比例变换的导出.利用李群方法计算了边界层方程的无穷小生成元.将边界层方程组变换为常微分方程组.利用Runge-Kutta法结合打靶技术求解了该非线性微分方程组的数值解.
  • [1] Acrivos A,Shah M J,Petersen E E.Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surface[J].A I Ch E Jl,1960,6:312—317. doi: 10.1002/aic.690060227
    [2] Pakdemirli M.Boundary layer flow of power-law past arbitrary profile[J].IMA Journal of Applied Mathematics,1993,50:133—148. doi: 10.1093/imamat/50.2.133
    [3] Beard D W,Walters K.Elastico-viscous boundary layer flows[J].Proc Camb Phil,1964,60:667—674. doi: 10.1017/S0305004100038147
    [4] Astin J,Jones R S,Lockyer P.Boundary layer in non-Newtonian fluids[J].J Mec,1973,12:527—539.
    [5] Pakdemirli M.Conventional and multiple deck boundary layer approach to second and third grade fluids[J].Internat J Engng Sci,1994,32(1):141—154. doi: 10.1016/0020-7225(94)90156-2
    [6] Yürüsoy M,Pakdemirli M.Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet[J].Mechanics Research Communications,1999,26(2):171—175. doi: 10.1016/S0093-6413(99)00009-9
    [7] Kaplun S.The role of coordinate systems in boundary layer theory[J].ZAMP,1954,5:111—135. doi: 10.1007/BF01600771
    [8] Kevorkian J,Cole J D.Perturbation Method in Applied Mathematics[M].New York:Springer,1981.
    [9] Pakdemirli M,Suhubi E S.Boundary layer theory second order fluids[J].Int J Engng Sci,1992,30(4):523—532. doi: 10.1016/0020-7225(92)90042-F
    [10] Pakdemirli M,Suhubi E S.Similarity solutions of boundary layer equations for second order fluids[J].Int J Engng Sci,1992,30(5):611—629. doi: 10.1016/0020-7225(92)90006-3
    [11] Pakdemirli M.The boundary layer equations of third-grade fluids[J].Int J Non-Linear Mech,1992,27(5):785—793. doi: 10.1016/0020-7462(92)90034-5
    [12] Fosdick R L,Rajagopal K R.Thermodynamics and stability of fluids of third grade[J].Proc R Soc,1980,339:351.
    [13] Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989.
    [14] Stephani H.Differential Equations:Their Solution Using Symmetries[M].England:Cambrideg Univeristy Press,1989.
  • 加载中
计量
  • 文章访问数:  2800
  • HTML全文浏览量:  133
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-10-31
  • 刊出日期:  2004-05-15

目录

    /

    返回文章
    返回