留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于参数变分原理的非均质材料弹塑性有限元分析的Voronoi单元法

张洪武 王辉

张洪武, 王辉. 基于参数变分原理的非均质材料弹塑性有限元分析的Voronoi单元法[J]. 应用数学和力学, 2006, 27(8): 904-912.
引用本文: 张洪武, 王辉. 基于参数变分原理的非均质材料弹塑性有限元分析的Voronoi单元法[J]. 应用数学和力学, 2006, 27(8): 904-912.
ZHANG Hong-wu, WANG Hui. Parametric Variational Principle Based Elastic-Plastic Analysis of Heterogeneous Materials With Voronoi Finite Element Method[J]. Applied Mathematics and Mechanics, 2006, 27(8): 904-912.
Citation: ZHANG Hong-wu, WANG Hui. Parametric Variational Principle Based Elastic-Plastic Analysis of Heterogeneous Materials With Voronoi Finite Element Method[J]. Applied Mathematics and Mechanics, 2006, 27(8): 904-912.

基于参数变分原理的非均质材料弹塑性有限元分析的Voronoi单元法

基金项目: 国家自然科学基金;创新群体基金资助项目(10225212;10421002;10332010);长江学者和创新团队发展计划资助项目;国家基础性发展规划项目(2005CB321704)
详细信息
    作者简介:

    张洪武(1964- ),男,大连人,教授,博士,博导(联系人.Tel:+86-411-84706249;E-mail:zhanghw@dlut.edu.cn.

  • 中图分类号: O344.3;O242.21

Parametric Variational Principle Based Elastic-Plastic Analysis of Heterogeneous Materials With Voronoi Finite Element Method

  • 摘要: 在非均质材料的有限元数值模拟中,采用了Voronoi单元(VCFEM)以克服经典位移元的局限性.基于参数变分原理和二次规划法进行了Voronoi单元的二维弹塑性分析A·D2推导了有限元列式并形成最终的二次规划求解模型.研究了非均质材料微观夹杂对整体力学性能的影响.数值算例证明了该方法的正确和可行性.
  • [1] Brockenbrough J R, Suresh S, Wienecke H A. Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape[J].Acta Metall Mater,1991,39(5):735—752. doi: 10.1016/0956-7151(91)90274-5
    [2] Christman T,Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites[J].Acta Metall Mater,1989,37(11):3029—3050. doi: 10.1016/0001-6160(89)90339-8
    [3] Hashin Z,Strikman S.A variational approach to the theory of the elastic behavior of multiphase materials[J].J Mech Phys Solids,1963,11(2):127—140. doi: 10.1016/0022-5096(63)90060-7
    [4] Chen H S, Acrivos A. The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations[J].Internat J Solids and Structures,1978,14(3):349—364. doi: 10.1016/0020-7683(78)90017-3
    [5] Hill R. A self consistent mechanics of composite materials[J].J Mech Phys Solids,1965,13(4):213—222. doi: 10.1016/0022-5096(65)90010-4
    [6] Hori M,Nemat-Nasser S. Double inclusion model and overall moduli of multiphase composites[J].J Mech Phys Solids,1993,14(2):189—206.
    [7] Bao G, Hutchinson J W,McMeeking R M.Plastic reinforcement of ductile matrices against plastic flow and creep[J].Acta Metall Mater,1991,39(5):1871—1882. doi: 10.1016/0956-7151(91)90156-U
    [8] Ghosh S, Mukhopadhyay S N. A material based finite elemtent analysis of heterogeneous media involving Dirichlet tessellations[J].Comput Methods Appl Mech Engrg,1993,104(3/4):211—247. doi: 10.1016/0045-7825(93)90198-7
    [9] Pian T H H. Derivation of element stiffness matrices by assumed stress distribution[J].AAIA J,1964,2(5):1333—1336. doi: 10.2514/3.2546
    [10] Zhang J,Katsube N.Problems related to application of eigenstrains in a finite element analysis[J].Internat J Numer Methods Engrg,1994,37(18):3185—3193. doi: 10.1002/nme.1620371811
    [11] Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J].Internat J Numer Methods Engrg,1995,38(10):1635—1653. doi: 10.1002/nme.1620381004
    [12] Ghosh S, Moorthy S.Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method[J].Comput Methods Appl Mech Engrg,1995,121(1/4):373—409. doi: 10.1016/0045-7825(94)00687-I
    [13] Ghosh S Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method[J].Internat J Solids and Structures,1995,32(1):27—62. doi: 10.1016/0020-7683(94)00097-G
    [14] Grujicic M, Zhang Y.Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J].Materials Science and Engineering,Ser A,1998,251(1):64—76. doi: 10.1016/S0921-5093(98)00647-9
    [15] Lee K, Ghosh S.A microstructure based numerical method for constitutive modeling of composite and porous materials[J].Materials Science and Engineering,Ser A,1999,272(1):120—133. doi: 10.1016/S0921-5093(99)00475-X
    [16] Raghavan P,Li S,Ghosh S. Two scale response and damage modeling of composite materials[J].Finite Elements in Analysis and Design,2004,40(12):1619—1640. doi: 10.1016/j.finel.2003.11.003
    [17] 钟万勰.岩土力学中的参变量最小余能原理[J].力学学报,1986,18(3):253—258.
    [18] 钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M].北京:科学技术出版社,1997.
    [19] Zhang H W, Xu W L, Di S L,et al.Quadratic programming method in numerical simulation of metal forming process[J].Comput Methods Appl Mech Engrg,2002, 191(49):5555—5578. doi: 10.1016/S0045-7825(02)00462-0
    [20] Zhang H W,Zhang X W,Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J].Computers and Structures,2003,81(17):1739—1749. doi: 10.1016/S0045-7949(03)00167-6
    [21] Zhang H W, Schrefler B A. Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media: one dimensional model[J].European Journal of Solid Mechanics A/Solids,2000,19(3):503—524. doi: 10.1016/S0997-7538(00)00177-7
  • 加载中
计量
  • 文章访问数:  2739
  • HTML全文浏览量:  151
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-08-16
  • 修回日期:  2006-03-06
  • 刊出日期:  2006-08-15

目录

    /

    返回文章
    返回