[1] |
Brockenbrough J R, Suresh S, Wienecke H A. Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape[J].Acta Metall Mater,1991,39(5):735—752. doi: 10.1016/0956-7151(91)90274-5
|
[2] |
Christman T,Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites[J].Acta Metall Mater,1989,37(11):3029—3050. doi: 10.1016/0001-6160(89)90339-8
|
[3] |
Hashin Z,Strikman S.A variational approach to the theory of the elastic behavior of multiphase materials[J].J Mech Phys Solids,1963,11(2):127—140. doi: 10.1016/0022-5096(63)90060-7
|
[4] |
Chen H S, Acrivos A. The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations[J].Internat J Solids and Structures,1978,14(3):349—364. doi: 10.1016/0020-7683(78)90017-3
|
[5] |
Hill R. A self consistent mechanics of composite materials[J].J Mech Phys Solids,1965,13(4):213—222. doi: 10.1016/0022-5096(65)90010-4
|
[6] |
Hori M,Nemat-Nasser S. Double inclusion model and overall moduli of multiphase composites[J].J Mech Phys Solids,1993,14(2):189—206.
|
[7] |
Bao G, Hutchinson J W,McMeeking R M.Plastic reinforcement of ductile matrices against plastic flow and creep[J].Acta Metall Mater,1991,39(5):1871—1882. doi: 10.1016/0956-7151(91)90156-U
|
[8] |
Ghosh S, Mukhopadhyay S N. A material based finite elemtent analysis of heterogeneous media involving Dirichlet tessellations[J].Comput Methods Appl Mech Engrg,1993,104(3/4):211—247. doi: 10.1016/0045-7825(93)90198-7
|
[9] |
Pian T H H. Derivation of element stiffness matrices by assumed stress distribution[J].AAIA J,1964,2(5):1333—1336. doi: 10.2514/3.2546
|
[10] |
Zhang J,Katsube N.Problems related to application of eigenstrains in a finite element analysis[J].Internat J Numer Methods Engrg,1994,37(18):3185—3193. doi: 10.1002/nme.1620371811
|
[11] |
Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J].Internat J Numer Methods Engrg,1995,38(10):1635—1653. doi: 10.1002/nme.1620381004
|
[12] |
Ghosh S, Moorthy S.Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method[J].Comput Methods Appl Mech Engrg,1995,121(1/4):373—409. doi: 10.1016/0045-7825(94)00687-I
|
[13] |
Ghosh S Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method[J].Internat J Solids and Structures,1995,32(1):27—62. doi: 10.1016/0020-7683(94)00097-G
|
[14] |
Grujicic M, Zhang Y.Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J].Materials Science and Engineering,Ser A,1998,251(1):64—76. doi: 10.1016/S0921-5093(98)00647-9
|
[15] |
Lee K, Ghosh S.A microstructure based numerical method for constitutive modeling of composite and porous materials[J].Materials Science and Engineering,Ser A,1999,272(1):120—133. doi: 10.1016/S0921-5093(99)00475-X
|
[16] |
Raghavan P,Li S,Ghosh S. Two scale response and damage modeling of composite materials[J].Finite Elements in Analysis and Design,2004,40(12):1619—1640. doi: 10.1016/j.finel.2003.11.003
|
[17] |
钟万勰.岩土力学中的参变量最小余能原理[J].力学学报,1986,18(3):253—258.
|
[18] |
钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M].北京:科学技术出版社,1997.
|
[19] |
Zhang H W, Xu W L, Di S L,et al.Quadratic programming method in numerical simulation of metal forming process[J].Comput Methods Appl Mech Engrg,2002, 191(49):5555—5578. doi: 10.1016/S0045-7825(02)00462-0
|
[20] |
Zhang H W,Zhang X W,Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J].Computers and Structures,2003,81(17):1739—1749. doi: 10.1016/S0045-7949(03)00167-6
|
[21] |
Zhang H W, Schrefler B A. Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media: one dimensional model[J].European Journal of Solid Mechanics A/Solids,2000,19(3):503—524. doi: 10.1016/S0997-7538(00)00177-7
|