留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质平板通道发展传热中非局部热平衡时的温度分布特征

杨骁 刘雪梅

杨骁, 刘雪梅. 多孔介质平板通道发展传热中非局部热平衡时的温度分布特征[J]. 应用数学和力学, 2006, 27(8): 978-986.
引用本文: 杨骁, 刘雪梅. 多孔介质平板通道发展传热中非局部热平衡时的温度分布特征[J]. 应用数学和力学, 2006, 27(8): 978-986.
YANG Xiao, LIU Xue-mei. Temperature Profiles of Local Thermal Nonequilibrium for Thermal Developing Forced Convection in a Porous Medium Parallel Plate Channel[J]. Applied Mathematics and Mechanics, 2006, 27(8): 978-986.
Citation: YANG Xiao, LIU Xue-mei. Temperature Profiles of Local Thermal Nonequilibrium for Thermal Developing Forced Convection in a Porous Medium Parallel Plate Channel[J]. Applied Mathematics and Mechanics, 2006, 27(8): 978-986.

多孔介质平板通道发展传热中非局部热平衡时的温度分布特征

基金项目: 国家自然科学基金资助项目(10272070);上海市重点学科建设资助项目(Y0103)
详细信息
    作者简介:

    杨骁(1965- ),男,山西人,博士、教授、博导,主要研究多孔介质理论、非线性固体力学(联系人.Tel.+86-21-66134972;Fax:+86-21-66134463;E-mail:xyang@staff.shu.edu.cn).

  • 中图分类号: O357.3;TK124

Temperature Profiles of Local Thermal Nonequilibrium for Thermal Developing Forced Convection in a Porous Medium Parallel Plate Channel

  • 摘要: 研究了多孔介质平板通道中,Darcy流体发展传热强迫对流非局部热平衡下,固相骨架和孔隙流体的温度分布特征.考虑流体流动方向的热传导以及固相和流相相互作用的粘性耗散,根据非局部热平衡的两能量方程模型,得到了常壁温度时多孔介质固相骨架温度和孔隙流体温度的解析解.证明了当两相间的热交换系数趋于无穷大时,两能量方程的温度解趋于局部热平衡时一能量方程的温度解.针对不同的无量纲参数,给出了固相和流相的温度分布状态,通过参数研究,揭示了非局部热平衡强迫对流时温度对无量纲参数的依赖关系.
  • [1] de Boer R.Theory of Porous Media:Highlights in the Historical Development and Current State[M].Berlin, Heidelberg:Springer-Verlag, 2000.
    [2] Voller V R, Peng S. An algorithm for analysis of polymer filling of molds [J].Poly Eng Science,1995,35(22):1758—1765. doi: 10.1002/pen.760352205
    [3] Schrefler B A, Pesavento F. Multiphase flow in deforming porous material[J].Computer and Geotechnics,2004,31(3):237—250. doi: 10.1016/j.compgeo.2004.01.005
    [4] Spiga G, Spiga M. A rigorous solution to a heat transfer two-phase model in porous media and packed beds[J].Heat Mass Transfer,1981,24(2):355—364. doi: 10.1016/0017-9310(81)90043-0
    [5] Schrefler B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions[J].Appl Mech Rev,2002,55(4):351—388. doi: 10.1115/1.1484107
    [6] Nield D A, Bejan A.Convection in Porous Media[M].second Ed. New York:Spring-Verlag,1999.
    [7] Haji-Sheikh A,Vafai K.Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts[J].Heat Mass Transfer,2004,47(8/9):1889—1905. doi: 10.1016/j.ijheatmasstransfer.2003.09.030
    [8] Simacek P, Advani S G. An analytic solution for the temperature distribution in flow through porous media in narrow gaps(Ⅰ)—linear injection[J].Heat Mass Transfer,2001,38(1/2):25—33. doi: 10.1007/s002310000184
    [9] Kuznetsov A V, MING Xiong, Nield D A. Thermally developing forced convection in a porous medium: circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects[J].Transport in Porous Media,2003,53(3):331—345. doi: 10.1023/A:1025060524816
    [10] Nield D A, Kuznetsov A V. Thermally developing forced convection in a channel occupied by a porous medium saturated by a non-Newtonian fluid[J].Heat Mass Transfer,2005,48(6):1214—1218. doi: 10.1016/j.ijheatmasstransfer.2004.09.040
    [11] Nield D A. Effects of local thermal nonequilibrium in steady convection processes in a saturated porous medium: forced convection in a channel[J].Porous Media,1998,1(2):181—186.
    [12] Nield D A, Kuznetsov A V. Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem[J].Heat Mass Transfer,1999,42(17):3245—3252. doi: 10.1016/S0017-9310(98)00386-X
    [13] MING Xiong, Nield D A, Kuznetsov A V. Effect of local non-equilibrium on thermally developing forced convection in a porous medium[J].Heat Mass Transfer,2002,45(25):4949—4955. doi: 10.1016/S0017-9310(02)00203-X
    [14] Quintard M, Whitaker S.Two-medium treatment of heat transfer in porous media: numerical results for effective properties[J].Adv Water Resour,1997,20(2/3):77—94. doi: 10.1016/S0309-1708(96)00024-3
    [15] Zhang H Y, Huang X Y.A two-equation analysis of convection heat transfer in porous media[J].Transport in Porous Media,2001,44(2):305—324. doi: 10.1023/A:1010774630459
    [16] YANG Xiao.Gurtin-type variational principles for dynamics of a non-local thermal equilibrium saturated porous medium[J].Acta Mechanica Solida Sinica,2005,18(1):37—45.
  • 加载中
计量
  • 文章访问数:  2969
  • HTML全文浏览量:  84
  • PDF下载量:  698
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-06-13
  • 修回日期:  2006-04-27
  • 刊出日期:  2006-08-15

目录

    /

    返回文章
    返回