留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乘积G-凸空间内的非空交定理和广义矢量平衡问题组

丁协平

丁协平. 乘积G-凸空间内的非空交定理和广义矢量平衡问题组[J]. 应用数学和力学, 2004, 25(6): 563-571.
引用本文: 丁协平. 乘积G-凸空间内的非空交定理和广义矢量平衡问题组[J]. 应用数学和力学, 2004, 25(6): 563-571.
DING Xie-ping. Nonempty Intersection Theorems and System of Generalized Vector Equilibrium Problems in Product G-Convex Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 563-571.
Citation: DING Xie-ping. Nonempty Intersection Theorems and System of Generalized Vector Equilibrium Problems in Product G-Convex Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 563-571.

乘积G-凸空间内的非空交定理和广义矢量平衡问题组

基金项目: 国家自然科学基金资助项目(19871059);四川省教育厅重点研究基金资助项目([2000]25)
详细信息
    作者简介:

    丁协平(1938- ),男,四川自贡人,教授(Tel:+86-28-84760929;E-mail:dingxip@sicnu.edu.cn).

  • 中图分类号: O177.92;O225

Nonempty Intersection Theorems and System of Generalized Vector Equilibrium Problems in Product G-Convex Spaces

  • 摘要: 利用作者在G-凸空间内对集值映象簇得到的一个极大元存在性定理,在非紧乘积G-空间内,对集值映象簇建立了某些新的非空交定理.作为应用, 在非紧乘积G-凸空间内, 对广义矢量平衡问题组证明了一些平衡存在性定理.这些定理统一、改进和推广了文献中一些重要的已知结果.
  • [1] Giannessi F. Theorems of alternative, quadratic programs and complementarity problems[A].In:R W Cottle, F Giannessi,J -L Lions Eds.Variational Inequalities and Complementarity Problems[C].New York:J Wiley Sons,1980,151—186.
    [2] Giannessi F.Vector Variational Inequalities and Vector Equilibria Mathematics Theories[M].London:Kluwer Academic Publishers,2000.
    [3] Pang J S.Asymmetric variational inequality problems over product sets: applications and iterative methods[J].Math Programming,1985,31(2):206—219. doi: 10.1007/BF02591749
    [4] Zhu D L, Marcotte P. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[J].SIAM J Optim,1996,6(3):714—726. doi: 10.1137/S1052623494250415
    [5] Cohen G, Chaplais F. Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms[J]. J Optim Theory Appl,1988,59(2):360—390.
    [6] Ansari Q H, Yao J C. A fixed point theorem and its applications to a system of variational inequalities[J].Bull Austral Math Soc,1999,59(2):433—442. doi: 10.1017/S0004972700033116
    [7] Ansari Q H, Yao J C. System of generalized variational inequalities and their applications[J].Appl Anal,2000,76(3/4): 203—217. doi: 10.1080/00036810008840877
    [8] Ansari Q H, Schaible S, Yao J C. System of vector equilibrium problems and their applications[J].J Optim Theory Appl,2000,107(3):547—557. doi: 10.1023/A:1026495115191
    [9] Ding X P,Park J Y. Fixed points and generalized vector equilibrium problems in G-convex spaces[J].Indian J Pure Appl Math,2003,34(6):973—990.
    [10] DING Xie-ping,Park J Y. Generalized vector equilibrium problems in generalized convex space[J].J Optim Theory Appl,2004,120(2):327—353. doi: 10.1023/B:JOTA.0000015687.95813.a0
    [11] Ansari Q H, Yao J C. An existence result for the generalized vector equilibrium problem[J].Appl Math Lett,1999,12(8):53—56.
    [12] Oettli W,SchlAa¨ger D. Existence of equilibria for g-monotone mappings[A].In:W Takahashi,T Tanaka Eds.Nonlinear Analysis and Convex Analysis[C].Singapore:World Scientific Pub,1999,26—33.
    [13] Lin L J, Yu Z T. Fixed-point theorems and equilibrium problems[J].Nonlinear Anal,2001,43:987—999. doi: 10.1016/S0362-546X(99)00202-3
    [14] 丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅰ)[J].应用数学和力学,2003,24(6):583—594.
    [15] 丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅱ)[J].应用数学和力学,2003,24(9):899—905.
    [16] Park S, Kim H. Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173—187. doi: 10.1006/jmaa.1996.0014
    [17] Park S, Kim H. Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(3):551—571. doi: 10.1006/jmaa.1997.5388
    [18] Park S. Continuous selection theorems for admissible multifunctions on generalized convex spaces[J].Numer Funct Anal Optimiz,1999,25(3):567—583.
    [19] Park S. Fixed points of admissible maps on generalized convex spaces[J].J Korean Math Soc,2000,37(4):885—899.
    [20] Tan K K, Zhang X L. Fixed point theorems on G-convex spaces and applications[J].Proc Nonlinear Funct Anal Appl,1996,1:1—19.
    [21] Deguire P, Tan K K, Yuan X Z. The study of maximal elements,fixed points for LS-majorized mappings and their applications to minimax and variational inequalities in product topological spaces[J].Nonlinear Anal,1999,37:933—951. doi: 10.1016/S0362-546X(98)00084-4
    [22] Park S,Kim H, Coincidence theorems on a product of generalized convex spaces and applications to equilibria[J].J Korean Math Soc,1999, 36(4):813—828.
    [23] Aubin J P, Ekeland I. Applied Nonlinear Analysis[M].New York:John Wiley & Sons,1984.
  • 加载中
计量
  • 文章访问数:  2560
  • HTML全文浏览量:  194
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-08-29
  • 修回日期:  2003-12-05
  • 刊出日期:  2004-06-15

目录

    /

    返回文章
    返回