留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

楔型向错偶极子和裂纹的干涉效应

方棋洪 刘又文

方棋洪, 刘又文. 楔型向错偶极子和裂纹的干涉效应[J]. 应用数学和力学, 2006, 27(9): 1084-1092.
引用本文: 方棋洪, 刘又文. 楔型向错偶极子和裂纹的干涉效应[J]. 应用数学和力学, 2006, 27(9): 1084-1092.
FANG Qi-hong, LIU You-wen. Elastic Interaction Between a Wedge Disclination Dipole and an Internal Crack[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1084-1092.
Citation: FANG Qi-hong, LIU You-wen. Elastic Interaction Between a Wedge Disclination Dipole and an Internal Crack[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1084-1092.

楔型向错偶极子和裂纹的干涉效应

基金项目: 国家自然科学基金资助项目(10472030)
详细信息
    作者简介:

    方棋洪(1977- ),男,浙江淳安人,博士;刘又文(1948- ),男,湖南益阳人,教授,博士生导师(联系人.Tel:+86-731-8821889;Fax:+86-731-8822330;E-mail:Liuyouw8294@sina.com)

  • 中图分类号: O343.7

Elastic Interaction Between a Wedge Disclination Dipole and an Internal Crack

  • 摘要: 研究了晶体材料中一个楔型向错偶极子与裂纹的弹性干涉效应.运用复变函数方法获得了复势函数和应力场的封闭形式解答,导出了裂纹尖端应力强度因子和作用在向错偶极子中心点像力的解析表达式.获得了向错偶极子的位置、方向和偶臂长度对裂纹尖端应力强度因子的影响规律,并讨论了裂纹附近向错偶极子的平衡位置.结果表明向错偶极子靠近裂纹尖端时,对应力强度因子有明显的屏蔽或反屏蔽作用.
  • [1] Romanov A E. Screened disclinations in solids[J].Materials Science & Engineering A,1993,164(1):58—68.
    [2] Romanov A E. Mechanics and physics of disclinations in solids[J].European Journal of Mechanics, A/Solids,2003,22(5):727—741. doi: 10.1016/S0997-7538(03)00089-5
    [3] Li J C M. Disclination model of high angle grain boundaries[J].Surface Science,1972,31(1):12—26. doi: 10.1016/0039-6028(72)90251-8
    [4] Romanov A E. Straight disclinations near a free surface[J].Physica Status Solidi,Ser A,1981,63(3):383—388. doi: 10.1002/pssa.2210630202
    [5] Vladimirov V I, Romanov A E. Behaviors of wedge disclination systems near grain boundaries[J].Physics of Metals,1982,4(6):1053—1062.
    [6] Romanov A E, Vladimirov V I.Disclinations in crystalline solids[A].In: Nabarro F R N Ed.Dislocation in Solids[C].Vol 9.Amsterdam:Elsevier,1992,191—402.
    [7] Wu M S. Exact solutions for a wedge disclination dipole in a transversely isotropic biomaterial[J].International Journal of Engineering Science,2000,38(16):1811—1835. doi: 10.1016/S0020-7225(99)00077-4
    [8] Sheinerman A G,Gutkin M Yu.Misfit disclinations and dislocation walls in a two-phase cylindrical composite[J].Physica Status Solidi ,Ser A,2001,184(2):485—505. doi: 10.1002/1521-396X(200104)184:2<485::AID-PSSA485>3.0.CO;2-4
    [9] Ballarini R, Denda M.Interaction between a crack and a dislocation dipole[J].International Journal of Fracture,1988,37(1):61—71. doi: 10.1007/BF00017823
    [10] Wang S D, Lee S B.Mechanical equilibrium of an edge dislocation dipole near a semi-infinite crack tip[J].International Journal of Fracture,1992,57(4):317—324. doi: 10.1007/BF00013056
    [11] Lin K M, Hu C T, Lee S B. Screw dislocation dipoles near an internal crack[J].Engineering Fracture Mechanics,1993,45(3):321—231. doi: 10.1016/0013-7944(93)90017-M
    [12] Yang Y S, Lee S L, Lan B T.Elastic behavior of dislocation dipole near a blunt crack[J].Engineering Fracture Mechanics,1995,52(1):83—93. doi: 10.1016/0013-7944(94)00332-C
    [13] Muskhelishvili N L.Some Basic Problems of Mathematical Theory of Elasticity[M].Leyden: Noordhoff,1975,331—340.
    [14] 樊大钧. 数学弹性力学[M].北京:新时代出版社,1983.
    [15] Zhang T Y, Li J C M. Interaction of an edge dislocation with an interfacial crack[J].Journal of Applied Physics,72(6):2215—2226.
    [16] FANG Qi-hong,LIU You-wen,JIANG Chi-ping. Edge dislocation interacting with an interfacial crack along a circular inhomogeneity[J].International Journal of Solids and Structures,2003,40(21):5781—5797. doi: 10.1016/S0020-7683(03)00338-X
  • 加载中
计量
  • 文章访问数:  2943
  • HTML全文浏览量:  82
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-05-27
  • 修回日期:  2006-06-02
  • 刊出日期:  2006-09-15

目录

    /

    返回文章
    返回