[1] |
Noor M A.Set-valued quasi variational inequalities[J].K J Comput Appl Math,2000,7:101—113.
|
[2] |
Noor M A.Three-step approximation schemes for multivalued quasi variational inclusions[J].Nonlinear Funct Anal Appl,2001,6(3):383—394.
|
[3] |
Noor M A.Two-step approximation schemes for multivalued quasi variational inclusions[J].Nonlinear Funct Anal Appl,2002,7(1):1—14.
|
[4] |
Noor M A.Multivalued quasi variational inclusions and implicit resolvent equations[J].Nonlinear Anal TMA,2002,48(2):159—174. doi: 10.1016/S0362-546X(00)00177-2
|
[5] |
Chang S S,Cho Y J,Lee B S,et al.Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,246:409—422. doi: 10.1006/jmaa.2000.6795
|
[6] |
Chang S S.Set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,248:438—454. doi: 10.1006/jmaa.2000.6919
|
[7] |
Chang S S,Kim J K,Kim K H.On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2002,268:89—108. doi: 10.1006/jmaa.2001.7800
|
[8] |
Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Leyden:Noordhaff,1979.
|
[9] |
Noor M A. Generalized set-valued variational inclusions and resolvent equations[J]. J Math Anal Appl,1998,228:206—220. doi: 10.1006/jmaa.1998.6127
|
[10] |
Chang S S.Some problems and results in the study of nonlinear analysis[J].Nonlinear Anal TMA,1997,30:4197—4208. doi: 10.1016/S0362-546X(97)00388-X
|
[11] |
Nadler S B.Multi-valued contraction mappings[J].Pacific J Math,1969,30:475—488.
|
[12] |
Noor M A.Some algorithms for general monotone mixed variational inequalities[J].Math Computer Modelling,1999,29(7):1—7.
|
[13] |
Uko L U.Strongly nonlinear generalized equations[J].J Math Anal Appl,1998,220:65—76. doi: 10.1006/jmaa.1997.5796
|
[14] |
Zeng L U.Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality[J].J Math Anal Appl,1996,201:180—191. doi: 10.1006/jmaa.1996.0249
|