Preconditioned Gauss-Seidel Type Iterative Methods for Solving Linear Systems
-
摘要: 给出了解线性方程组的预条件Gauss-Seidel型方法,提出了选取合适的预条件因子.并讨论了对Z-矩阵应用这种方法的收敛性,给出了收敛最快时的系数取值.最后给出数值例子,说明选取合适的预条件因子应用Gauss-Seidel方法求解线性方程组是有效的.
-
关键词:
- Gauss-Seidel方法 /
- 预条件迭代法 /
- Z-矩阵
Abstract: The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, was presented. Convergence of the preconditioned method applied to Z-matrices was discussed. Also the optimal parmeter was presented. Numerical results show that the proper choice of the preconditioner can lead to effective the preconditioned Gauss-Seidel type iterative methods for solving linear systems.-
Key words:
- Gauss-Seidel method /
- preconditioned iterative method /
- Z-matrix
-
[1] LI Wen.Preconditioned AOR iterative methods for linear systems[J].Internat J Computer Math,2002,79(1):89—101. doi: 10.1080/00207160211910 [2] Young D M.Iterative Solution of Large Linear Systems[M].New York: Academic Press,1971. [3] Varga R S.Matrix Iterative Analysis[M].Englewood Cliffs, NJ: Prentice-Hall,1981. [4] Berman A,Plemmons R J.Nonnegative Matrices in the Mathematical Sciences[M],London:Academic Press, 1979. [5] Hans Schneider. Which depend on graph structure[J].Linear Algebra Appl,1984,58:407—424. doi: 10.1016/0024-3795(84)90222-2 [6] Evans D J,Martins M M,Trigo M E.The AOR iterative method for new preconditioned linear systems[J].J Comput Appl Math,2001,132:461—466. doi: 10.1016/S0377-0427(00)00447-7
计量
- 文章访问数: 2944
- HTML全文浏览量: 138
- PDF下载量: 770
- 被引次数: 0