[1] |
Gomes H M,Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J].Structural Safety,2004,26(1):49—67. doi: 10.1016/S0167-4730(03)00022-5
|
[2] |
Schueremans L, Gemert D V. Benefit of splines and neural networks in simulation based structural reliability analysis[J].Structural Safety,2005,27(3):246—261. doi: 10.1016/j.strusafe.2004.11.001
|
[3] |
Rackwitz R. Reliability analysis—a review and some perspectives[J].Structural Safety,2001,23(4):365—395. doi: 10.1016/S0167-4730(02)00009-7
|
[4] |
Nowak A R,Collins K R.Reliability of Structures[M].Boston:McGraw-Hill, 2000.
|
[5] |
Zhao Y G, Ono T.A general procedure for first/second-order reliability method (FORM/SORM)[J].Structural Safety,1999,21(2):95—112. doi: 10.1016/S0167-4730(99)00008-9
|
[6] |
Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[J].Structural Safety,2004,26(3):271—293. doi: 10.1016/j.strusafe.2003.05.002
|
[7] |
Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems[J].Structural Safety,1990,7(1):57—66. doi: 10.1016/0167-4730(90)90012-E
|
[8] |
Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability analysis[J].Structural Safety,1993,12(3):205—220. doi: 10.1016/0167-4730(93)90003-J
|
[9] |
Kim S,Na S.Response surface method using vector projected sampling points[J].Structural Safety,1997,19(1):3—19. doi: 10.1016/S0167-4730(96)00037-9
|
[10] |
Guan X L, Melchers R E. Effect of response surface parameter variation on structural reliability estimates[J].Structural Safety,2001,23(4):429—444. doi: 10.1016/S0167-4730(02)00013-9
|
[11] |
Hurtado J E, Alvarez D A. Neural-network-based reliability analysis: a comparative study[J].Computer Methods in Applied Mechanics and Engineering,2001,191(1/2):113—132. doi: 10.1016/S0045-7825(01)00248-1
|
[12] |
Papadrakakis M, Lagaros N D.Reliability-based structural optimization using neural networks and Monte Carlo simulation[J].Computer Methods in Applied Mechanics and Engineering,2002,191(32):3491—3507. doi: 10.1016/S0045-7825(02)00287-6
|
[13] |
Deng J, Gu D S,Li X B,et al.Structural reliability analysis for implicit performance functions using artificial neural network[J].Structural Safety,2005,27(1):25—48. doi: 10.1016/j.strusafe.2004.03.004
|
[14] |
Cortes C, Vapnik V N.Support vector networks[J].Machine Learning,1995,20(3):273—297.
|
[15] |
Vapnik V N. An overview of statistical learning theory[J].IEEE Transaction on Neural Networks,1999,10(5):988—998. doi: 10.1109/72.788640
|
[16] |
Vapnik V N.The Nature of Statistical Learning Theory[M].New York: Springer-Verlag, 1995.
|
[17] |
邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京: 科学出版社,2004.
|
[18] |
Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine[J].Reliability Engineering and System Safety,2002,76(3):237—243. doi: 10.1016/S0951-8320(02)00015-7
|
[19] |
Hurtado J E, Alvarez D A. Classification approach for reliability analysis with stochastic finite~element modeling[J].Journal of Structural Engineering,2003,129(8):1141—1149. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141)
|