Directional Derivative of the Vector Field and Regular Curves on Time Scales
-
摘要: 研究了一类参数方程的曲线,其参变量表示为所谓时标(time scale),该时标是所有实数的集的一个任意闭子集.引入了相应于矢量场的方向导数.
-
关键词:
- 时标 /
- 矢量微分算子(nabla)导数 /
- 正则曲线 /
- 切线 /
- 矢量场
Abstract: The general idea is to study curves where in the parametric equations the parameter varies in a so-called time scale, which may be an arbitrary closed subset of the set of all real numbers. The directional derivative according to the vector fields was introduced.-
Key words:
- time scale /
- nabla derivative /
- regular curve /
- tangent line /
- vector field
-
[1] Aulbach B,Hilger S. Linear dynamic processes with inhomogeneous time scale[A].In:Nonlinear Dynamics and Quantum Dynamical Systems[C].Berlin:Akademie Verlag,1990,9—20. [2] Ahlbrandt C D, Bohner M, Ridenhour J. Hamiltonian systems on time scales[J].J Math Anal Appl,2000,250:561—578. doi: 10.1006/jmaa.2000.6992 [3] Hoffacker J. Basic partial dynamic equations on time scales[J].J Difference Equ Appl,2002,8(4):307—319.(In honor of Professor Lynn Erbe) doi: 10.1080/1026190290017379 [4] Bohner M,Peterson A.Dynamic Equations on Time Scales—An Introduction With Applications[M].Boston: Birkhauser, 2001. [5] Bohner M, Guseinov G. Partial differentiation on time scales[J].Dynamic Systems and Applications,2003,12:351—379.
计量
- 文章访问数: 2630
- HTML全文浏览量: 82
- PDF下载量: 736
- 被引次数: 0