留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宾汉流体稠密两相湍流流动中的二阶矩模型

曾卓雄 周力行 刘志和

曾卓雄, 周力行, 刘志和. 宾汉流体稠密两相湍流流动中的二阶矩模型[J]. 应用数学和力学, 2006, 27(10): 1202-1210.
引用本文: 曾卓雄, 周力行, 刘志和. 宾汉流体稠密两相湍流流动中的二阶矩模型[J]. 应用数学和力学, 2006, 27(10): 1202-1210.
ZENG Zhuo-xiong, ZHOU Li-xing, LIU Zhi-he. Second-Order Moment Model for Dense Two-Phase Turbulent Flow of Bingham Fluid With Particles[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1202-1210.
Citation: ZENG Zhuo-xiong, ZHOU Li-xing, LIU Zhi-he. Second-Order Moment Model for Dense Two-Phase Turbulent Flow of Bingham Fluid With Particles[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1202-1210.

宾汉流体稠密两相湍流流动中的二阶矩模型

基金项目: 国家重点基础研究专项经费资助项目(G1999-0222-08)
详细信息
    作者简介:

    曾卓雄(1972- ),男,江西南昌人,教授,博士(E-mail:zengzhx@163.com).

  • 中图分类号: O359

Second-Order Moment Model for Dense Two-Phase Turbulent Flow of Bingham Fluid With Particles

  • 摘要: 建立的Bingham流体稠密两相流动的二阶矩-颗粒动力论湍流模型(USM-theta模型)既体现了两相的作用,又体现了屈服应力所引起的附加项,并提出了USM-theta模型下考虑浓度修正值影响的两相湍流流动的算法.利用该模型对圆管内Bingham流体的单相湍流流动、稠密液固两相的湍流流动进行了计算,并和五方程湍流模型进行了比较,结果表明该模型的预测效果更好.利用USM-theta模型对含颗粒的Bingham流体的两相湍流流动进行了模拟,随着屈服应力的增加,Bingham流体相与颗粒相在管道中心附近的主流速度减小.液固两相湍流和Bingham流体两相湍流的计算结果表明屈服应力引起的附加项对流动有很重要的影响.
  • [1] Tchen C M.Mean value and correlation problems connected with the motion of small particles in a turbulent field[D].Hague, Martinus Nijhoff:Delft University, 1947.
    [2] Hinze J O.Turbulence[M].New York:McGraw Hill,1975.
    [3] Zhou L X,Huang X Q.Prediction of confined gas-particle jets by an energy equation model of particle turbulence[J].Science in China,1990,33:53—59.
    [4] Gidaspow D.Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M].New York: Academic Press, 1994.
    [5] Cheng Y,Guo Y C,Wei F,et al.Modeling the hydrodynamics of downer reactors based on kinetic theory[J].Chem Eng Sci,1999,54(13/14):2019—2027. doi: 10.1016/S0009-2509(98)00293-0
    [6] Zheng Y,Wan X T,Qian Z,et al.Numerical simulation of the gas-particle turbulent flow in riser reactor based on kf-εf-kp-εp-θ two-fluid model[J].Chem Eng Sci,2001,56(24):6813—6822. doi: 10.1016/S0009-2509(01)00319-0
    [7] Yu Y,Zhou L X,Zheng C G,et al.Simulation of swirling gas-particle flows using different time scales for the closure of two-phase velocity correlation in the second-order moment two-phase turbulence model[J].Transactions of ASME, Journal of Fluids Engineering,2003,125(2):247—250. doi: 10.1115/1.1538630
    [8] 于勇.两相流动气体湍流变动模型和稠密两相湍流模型的研究[D].北京:清华大学工程力学系,2004.
    [9] 胡春波,尚莲英,蔡体敏.宾汉流体湍流流动的理论研究[J].西北工业大学学报,1998,16(4):589—592.
    [10] 胡春波,魏进家,姜培正,等.直圆管突扩通道内宾汉流体湍流流场的数值研究[J].应用数学和力学,1998,19(11):1015—1020.
    [11] 胡春波,姜培正,魏进家.离心泵叶轮内宾汉流体湍流流场的数值模拟[J]. 应用力学学报,1999,16(2):104—107.
    [12] Salvi R. On the existence of two phase problem for Bingham fluids[J].Nonlinear Analysis,2001,47(6):4205—4216. doi: 10.1016/S0362-546X(01)00537-5
    [13] Dziubinski M, Fidos H, Sosno M.The flow pattern map of a two-phase non-Newtonian liquid-gas flow in the vertical pipe[J].Internat J Multiphase Flow,2004,30(6):551—563. doi: 10.1016/j.ijmultiphaseflow.2004.04.005
    [14] Fidos H.Flow hydrodynamics of multiphase mixtures of non-Newtonian liquid-gas-solid particles in vertical pipes[D]. Poland:Lodz Technical University,2001.
    [15] 亢力强,曾卓雄,姜培正.宾汉流体与颗粒间的密相两相湍流研究[J].西安交通大学学报,2002,36(7):693—696.
    [16] 亢力强. 非牛顿流体与颗粒间的密相两相湍流的理论分析和数值计算[D].西安:西安交通大学,2000.
    [17] Zeng Z X,Xie Y B,Jiang Sh T. Numerical simulation on dense two-phase turbulent flow of Bingham fluid with particle[A]. In: Zhou L X,Ed.The Second International Symposium on Multiphase, Non-Newtonian and Reacting Flows'04[C].China: International Academic Publishers/ Beijing World Publishing Corporation, 2004, 427—429.
    [18] 周力行.多相湍流反应流体力学[M]. 北京:国防工业出版社,2002.
    [19] Zhou L X,Xu Y,Fan L S,et al. Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model[J].Powder Tech,2001,116(3):178—189. doi: 10.1016/S0032-5910(00)00396-X
    [20] 姜培正,魏进家,王长安. 浓密液固两相流动的数值研究与理论分析[J].西安交通大学学报,1998,32(4):84—88.
    [21] 陈立.高含沙圆管流的紊动强度分布[J]. 水动力学研究与进展,1993,8(12):526—534.
    [22] Van Doormaal J P, Raithby G D. Enhancements of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,7:147—163.
    [23] Alajbegovic A,Assad A, Benetto F. Phase distribution and turbulence structure for solid/fluid upflow in a pipe[J].Internat J Multiphase Flow,1994,20(3):453—479. doi: 10.1016/0301-9322(94)90021-3
  • 加载中
计量
  • 文章访问数:  2792
  • HTML全文浏览量:  130
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-06-17
  • 修回日期:  2006-07-02
  • 刊出日期:  2006-10-15

目录

    /

    返回文章
    返回