[1] |
Petzold L R, Jay L O,Yen J. Numerical solution of highly oscillatory ordinary differential equations[J].Acta Numerica,1997,6:437—483. doi: 10.1017/S0962492900002750
|
[2] |
Hairer E, Lubich C,Wanner G.Geometric Numerical Integration[M].Ch XIII.Berlin:Springer Verlag,2002.
|
[3] |
Gautschi W. Numerical integration of ordinary differential equations based on trigonometric polynomials[J].Numer Math,1961,3(1):381—397. doi: 10.1007/BF01386037
|
[4] |
García-Archilla B, Sanz-Serna J M,Skeel R D. Long-time-step methods for oscillatory differential equations[J].SIAM J Sci Comput,1998,20(3):930—963. doi: 10.1137/S1064827596313851
|
[5] |
Hochbruck M, Lubich C.A Gautschi-type method for oscillatory second-order differential equations[J].Numer Math,1999,83(3):403—426. doi: 10.1007/s002110050456
|
[6] |
Iserles A, Nrsett S P. On the solution of linear differential equations in Lie groups[J].Philos Trans Roy Soc,Ser A,1999,357(1754):983—1020. doi: 10.1098/rsta.1999.0362
|
[7] |
Iserles A, Munthe Kaas H Z, Nrsett S P,et al.Lie-groups methods[J].Acta Numerica,2000,9:215—365. doi: 10.1017/S0962492900002154
|
[8] |
Iserles A. On the global error of discretization methods for highly-oscillatory ordinary differential equations[J].BIT,2002,42(3):561—599. doi: 10.1023/A:1022049814688
|
[9] |
Iserles A, Think globally, act locally: Solving highly-oscillatory ordinary differential equations[J].Appl Numer Anal,2002,43(1):145—160.
|
[10] |
Iserles A.On Cayley-transform methods for the discretization of Lie-group equations[J].Found Comput Maths,2001,1(2):129—160. doi: 10.1007/s102080010003
|
[11] |
Hairer E,Nrsett S P,Wanner G.Solving Ordinary Differential Equations Ⅰ: Nonstiff Problems[M].Berlin:Springer-Verlag,1987.
|
[12] |
Vigo-Aguiar J,Ferrándiz J M. A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems[J].SIAM J Numer Anal,1998,35(4):1684—1708. doi: 10.1137/S0036142995286763
|
[13] |
Zhang S, Deng Z.A simple and efficient fourth-order approximation solution for nonlinear dynamical systems[J].Mech Res Comm,2004,31(2):221—228. doi: 10.1016/j.mechrescom.2003.10.004
|