Application of Wu Elimination Method to Constrained Dynamics
-
摘要: 主要借鉴吴消元法,研究带约束动力学中多项式类型Lagrange方程和Hamilton方程,提出了一种求约束的新算法.与以前算法相比,新算法无需求Hessian矩阵的秩,无需判定方程的线性相关性,从而大为减少了计算步骤,且计算更为简单.此外,计算过程中膨胀较小,且多数情形下无膨胀.利用符号计算软件,新算法可在计算机上实现.
-
关键词:
- Hamilton系统 /
- 约束 /
- 特征列 /
- Hessian矩阵
Abstract: The polynomial type Lagrange equation and Hamilton equation of finite dimensional constrained dynamics are considered. A new algorithm was presented for solving constraints based on Wu elimination method. The new algorithm does not need to calculate the rank of Hessian matrix and determine the linear dependence of equations, so the steps of calculation decrease greatly. In addition, the expanding of expression occurring in the computing process is smaller. Using the symbolic computation software platform, the new algorithm can be executed in computers.-
Key words:
- Hamilton system /
- constrained dynamics /
- characteristic chain /
- Hessian matrix
-
[1] Shanmugadhasan S.Generalized Canonical formalism for degnerate dynamical systems[J].Proc Camb Phil Soc,1963,59:743—757. doi: 10.1017/S0305004100003765 [2] Dirac P A M.Generalized Hamiltonian dynamics[J].Canda J Math,1950,2:129—148. doi: 10.4153/CJM-1950-012-1 [3] Dirac P A M.Generalized Hamiltonian dynamics[J].Proc Roy Soc A,1958,246:326—332. doi: 10.1098/rspa.1958.0141 [4] Sundermeyer K.Constrained Dynamics[M].Lecture Notes in Physics 169.New York:Springer~Verlag,1982. [5] Seiler Werner M,Tucker Robin W.Involution and consrtrained dynamics Ⅰ:The Dirac approach[J].Journal of Physics A - Mathematical and General,1995,28:4431—4451. doi: 10.1088/0305-4470/28/15/022 [6] 吴文俊,数学机械化[M].北京:科学出版社,2003. [7] 何青.计算代数[M].北京:北京师范大学出版社,1997. [8] Gogilidze S A,Khvedelidze A M.Hamiltonian reduction of SU(2) Dirac-Yang-Mills mechanics[J].Phys Rev D,1998,57:7488—7500. doi: 10.1103/PhysRevD.57.7488
计量
- 文章访问数: 2807
- HTML全文浏览量: 152
- PDF下载量: 736
- 被引次数: 0