Solitary Waves in Finite Deformation Elastic Circular Rod
-
摘要: 在同时引入横向惯性和横向剪切应变的情况下,导出了有限变形弹性圆杆的非线性纵向波动方程,方程中包含了二次和三次的非线性项以及由横向剪切与横向惯性导致的两种几何弥散效应.借助Mathematica软件,利用双曲正割函数的有限展开法,对该方程和对应的截断的非线性方程进行求解,得到了非线性波动方程的孤波解,同时给出了这些解存在的必要条件.Abstract: A new nonlinear wave equation of a finite deformation elastic circular rod simultaneously introducing transverse inertia and shearing strain was derived by means of Hamilton principle. The nonlinear equation includes two nonlinear terms caused by finite deformation and double geometric dispersion effects caused by transverse inertia and transverse shearing strain. Nonlinear wave equation and corresponding truncated nonlinear wave equation were solved by the hyperbolic secant function finite expansion method. The solitary wave solutions of these nonlinear equations are obtained. The necessary condition of these solutions existence is given also.
-
[1] Whitham G B.Linear and Nonlinear Waves[M].New York: John Wiley & Sons,1974. [2] Bhatnager P L.Nonlinear Waves in One-Dimensional Dispersive System[M].Oxford: Clarendon Press,1979. [3] 杨桂通,张善元.弹性动力学[M].北京:中国铁道出版社,1988. [4] Porubov Alexei V,Velarde Manuel G.On nonlinear waves in an elastic solid[J].C R Acad Sci Series Ⅱ b,2000,328(2):165—170. [5] WANG Ming-liang.Solitary solutions for variant Boussinesq equations[J].Physics Letter A,1995,199(1):169—172. doi: 10.1016/0375-9601(95)00092-H [6] YAN Chun-tao.A simple transformation for nonlinear waves[J].Physics Letter A,1996,224(1):77—84. doi: 10.1016/S0375-9601(96)00770-0 [7] ZHENG Xue-dong,XIA Tie-cheng,ZHANG Hong-qing.New exact traveling wave solutions for compound KdV-Burgers equations in mathematical physics[J].Applied Mathematics E-Notes,2002,2(1):45—50. [8] 刘式适,付遵涛,刘式达,等.求某些非线性偏微分方程特解的一个简洁方法[J].应用数学和力学,2001,22(3):281—286. [9] ZHANG Jie-fang. New solitary wave solution of the combined KdV and mKdV equation[J].International Journal of Theoretical Physics,1998,37(5):1541—1546. doi: 10.1023/A:1026615919186
计量
- 文章访问数: 2822
- HTML全文浏览量: 79
- PDF下载量: 817
- 被引次数: 0