Relaxed Elastic Lines of Second Kind on an Oriented Surface in Minkowski Space
-
摘要: 在Minkowski空间中,定义了定向曲面上的第二类松弛弹性线,推导了在定向曲面上的第二类松弛弹性线的Euler-Lagrange方程.进一步阐明了,这些曲线是否落在曲率线上,最后给出相关的实例.
-
关键词:
- 弹性线 /
- 测地线 /
- Minkowski空间 /
- Euler-Lagrange方程
Abstract: The relaxed elastic line of second kind on an or iented surface in the Minkowski space was defined and for the relaxed elastic line of second kind which was lying on an oriented surface the Euler-Lagr ange equations were derived.Further more,whether these curve lie on a curvature line or not is investigated and some applications are given.-
Key words:
- elastic line /
- geodesic /
- Minkowski space /
- Euler-Lagrange equation
-
[1] Landau L D,Lifshitz E M.Theory of Elasticity[M].Oxford:Pergamon Press,1979,84. [2] Manning G S.Relaxed elastic line on a curved surfaces[J].Quarterly of Applied Mathematics,1987,XLV(3):515—527. [3] Nickerson H K,Manning G S.Intrinsic equations for an relaxed elastic line on a oriented surface[J].Geometriae Dedicata,1988,27:127—136. [4] Weinstock R.Calculus on Variations[M].New York:Dover,1974,16—48. [5] nan Z, Ylmaz M.Elastic lines of second kind on an oriented surface[J].Ondokuz Mays niv Fen Dergisi,1997,8(1):1—10. [6] Hilbert D,Cohn-Vossen S.Geometry and the Imagination[M].New York:Chelsea,1952,172—248. [7] Weinstein T.An Introduction to Lorentz Surfaces[M].New York:Walter de Gruyter,1966,149—151. [8] Ekici C.Yar-?klidyen Uzaylarda Genelletirilmi Yar-Regle Yüzeyler[D].Ph D Dissertation.Osmangazi niversitesi,1998,95—96.(in Turkish) [9] Tutar A.IL3 Lorentz Uzaynda Küresel e[KG-*3]. griler ve Joachimsthal Teoremi[D].Ph D Dissertation, Ondokuz Mays niversitesi,1994,36—37.(in Turkish) [10] O'Neill B.Elemantary Differential Geometry[M].New York:Academic Press,1966,196—214. [11] Hsiung C C.A First Course in Differential Geometry[M].New York:John Wiley & Sons,1981,207—210.
计量
- 文章访问数: 2739
- HTML全文浏览量: 83
- PDF下载量: 450
- 被引次数: 0