Asymptotic Stabilities of Stochastic Functional Differential Equations
-
摘要: 应用多个Liapunov函数讨论了随机泛函微分方程解的渐近行为,建立了确定这种方程解的极限位置的充分条件,并且从这些条件得到了随机泛函微分方程渐近稳定性的有效判据,使实际应用中构造Liapunov函数更为方便.同时也说明了该结果包含了经典的随机泛函微分方程稳定性结果为其特殊情况.最后给出的结果在随机Hopfield神经网络中的应用.Abstract: Asymptotic characteristic of the solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Liapunov functions for locating the limit set of the solution.Moreover,from them many effective criteria on stochastic asymptotic stability,which enable us to construct the Liapunov functions much more easily in application were obtained.The results show that the well-known classical theorem on stochastic asymptotic stability is a special case of our more general results.In the end,application in stochastic Hopfield neural networks is given to verify the results.
-
[1] 黄琳.稳定性与鲁棒性的理论基础[M].北京:科学出版社,2003,45—46. [2] Lasalle J P.Stability theory of ordinary differential equations[J].J Differential Equations,1968,4(1):57—65. doi: 10.1016/0022-0396(68)90048-X [3] MAO Xue-rong.Some contributions to stochastic asymptotic stability and boundedness via multiple Liapunov functions[J].J Math Anal Appl,2001,260(2):325—340. doi: 10.1006/jmaa.2001.7451 [4] MAO Xue-rong.Stochastic versions of the LaSalle-type theorem[J].J Differential Equations,1999,153(1):175—195. doi: 10.1006/jdeq.1998.3552 [5] Kolmanovskii V B, Nosov V R.Stability of Functional Differential Equations[M].New York:Academic Press, 1986, 115—120. [6] MAO Xue-rong.Stochastic Differential Equations and Applications[M].Chichester:Ellis.Horwood, 1997,158—159. [7] 沈轶,廖晓昕.非线性随机时滞系统族的鲁棒稳定性[J].自动化学报,1999,25(4):537—542. [8] 沈轶,廖晓昕.随机中立型泛函微分方程指数稳定的Razumikhin型定理[J].科学通报,1998,43(21):2272—2275. [9] Hopfield J.Neural networks and physical system with emergent collective computational abilities[J].Proc Nat Acad Sci,USA,1982,79(8):2254—2558. [10] Liao X,MAO Xue-rong.Stability of stochastic neural networks[J].Neural,Parallel & Scientific Computations,1996,4(1):205—224. [11] 沈轶,张玉民,廖晓昕.随机细胞神经网络的指数稳定性[J].电子学报,2002,30(11):1672—1675. [12] Lipster R S, Shiryayev A N.Theory of Martingales[M].Dordrecht: Kluwer Academic, 1989, 201—202.
计量
- 文章访问数: 2863
- HTML全文浏览量: 155
- PDF下载量: 745
- 被引次数: 0