[1] |
Ferdinand Verhulst.Nonlinear Differential Equations and Dynamical Systems[M].Berlin:Springer-Verlag, 1990.
|
[2] |
Jackson E Atlee.Perspectives of Nonlinear Dynamics[M].New York: Cambridge University Press, 1991.
|
[3] |
Guckenheimer J, Holmes P.Nonlinear Oscillation and Bifurcation of Vector Fields[M].New York:Springer-Verlag, 1993.
|
[4] |
Holmes P,Rand D.Phase portraits and bifurcation of the nonlinear oscillator:+(α+γx2)+βx+δx3=0[J].International Journal of Nonlinear Mechanics,1980,15(6):449—458. doi: 10.1016/0020-7462(80)90031-1
|
[5] |
Tsuda Y,Tamura H,Sueoka A,et al.Chaotic behaviour of a nonlinear vibrating system with a retarded argument[J].JSME International Journal ,Series Ⅲ,1992,35(2):259—267.
|
[6] |
Szemplinska-Stupnicka, Rudowski J. The coexistence of periodic, almost-periodic and chaotic attractions in the Van der Pol-Duffing oscillator[J].Journal of Sound and Vibration,1997,199(2):165—175. doi: 10.1006/jsvi.1996.0648
|
[7] |
Maccari Attilio.Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation[J].Nonlinear Dynamics,1998,15(4):329—343. doi: 10.1023/A:1008235820302
|
[8] |
Algaba A,Fernandez-Sanchez E,Freire E,et al.Oscillation-sliding in a modified Van der Pol-Duffing electronic oscillator[J].Journal of Sound and Vibration,2002,249(5):899—907. doi: 10.1006/jsvi.2001.3931
|
[9] |
XU Jian,Chung K W.Effects of time delayed position feedback on a Van der Pol-Duffing oscillator[J].Physica D,2003,180(1):17—39. doi: 10.1016/S0167-2789(03)00049-6
|
[10] |
Moukam Kakmeni F M,Bowong S,Tchawoua C,et al.Strange attractors and chaos control in a Duffing-Van der Pol oscillator with two external periodic forces[J].Journal of Sound and Vibration,2004,277(4/5):783—799. doi: 10.1016/j.jsv.2003.09.051
|
[11] |
陈予恕.非线性振动系统的分叉和混沌理论[M]. 北京: 高等教育出版社,1993.
|
[12] |
Fofana M S,Ryba P B.Pramertic stability of nonlinear time delay equations[J].International Journal of Nonlinear Mechanics,2004,39(1):79—91. doi: 10.1016/S0020-7462(02)00139-7
|
[13] |
Ji J C,Leung A Y T. Bifurcation control of parametrically excited Duffing system[J].Nonlinear Dynamics,2002,27(4):411—417. doi: 10.1023/A:1015221422293
|
[14] |
Hairer E,Norsett S P, Wanner G.Solving Ordinary Differential Equations Ⅰ: Nonstiff Problems[M].Berlin:Springer-Verlag,1987.
|
[15] |
Hiroshi Yabuno. Bifurcation control of parametrically excited Duffing system by a combined linear-plus-nonlinear feedback control[J].Nonlinear Dynamics,1997,12(3):263—274. doi: 10.1023/A:1008270815516
|
[16] |
Ji J C, Hansen C H. Nonlinear oscillations of a rotor in active magnetic bearings[J].Journal of Sound and Vibration,2001,240(4):599—612. doi: 10.1006/jsvi.2000.3257
|
[17] |
丁千,陈予恕,叶敏,等. 一类非自治滞后-自激系统的主共振与锁模现象[J].力学学报,2002,34(1):123—130.
|