Scattering of Circular Cavity in Right-Angular Planar Space to Steady SH-Wave
-
摘要: 利用复变函数方法和多极坐标移动技术,研究了直角平面内圆孔在直边分布有反平面稳态载荷时的SH波散射问题.首先构造出直角平面内不含有圆孔时满足边界应力条件的Green函数解;其次提出直角平面内存在圆孔时满足边界应力自由条件的散射波解,并利用叠加原理写出问题的位移总波场.借助于多极坐标移动技术和圆孔边界处应力自由条件,列出求解散射波解中未知系数的无穷代数方程组,在满足计算精度的前提下,通过有限项截断进行求解.作为算例,具体讨论了圆孔边界处的环向动应力随不同波数、圆孔位置及载荷分布位置和分布范围大小的变化情况,算例结果说明了算法的有效实用性.Abstract: Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angular planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angular planar space which has no circular cavity was constructed; then the scattering solution which satisfies the free stress conditions of the two right-angular boundaries with the circular cavity existing in the space was formulated, therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity, it can be solved by using limit items in the infinite series which can give a high computation precision. An example was given to illustrate the variations of the tangential stress at the boundary of the circular cavity to different dimensionless wave numbers and the location of the circular cavity and the loading center and the distributing range of out-of-plane loading. The results of the example show the efficiency and the effectiveness of the method introduced here.
-
[1] 刘殿魁,盖秉政,陶贵源.论孔附近的动应力集中[J].力学学报,1981,特刊,65—77. [2] Akis I Vardoul,Georgiadis H G.SH surface waves in a homogeneous gradient-elastic half-space with surface energy[J].Journal of Elasticity,1997,47(2):147—165. doi: 10.1023/A:1007433510623 [3] Emets V F,Kunets Ya I,Matus V V.Scattering of SH waves by an elastic thin-walled rigidly supported inclusion[J].Archive of Applied Mechanics,2004,73(11/12):769—780. doi: 10.1007/s00419-004-0323-z [4] 刘殿魁,刘宏伟.SH波散射与界面圆孔附近的动应力集中[J].力学学报,1998,30(5):597—604. [5] 刘殿魁,许贻燕.各向异性介质中SH波与多个半圆形凹陷地形的相互作用[J].力学学报,1993,25(1):94—102. [6] 许贻燕,韩峰.平面SH波在相邻多个半圆形凹陷地形上的散射[J].地震工程与工程震动,1992,12(2):12—17. [7] 韩峰,刘殿魁.各向异性介质中SH波对有衬砌的任意形半凹陷地形的散射[J].应用数学和力学,1997,18(8):753—761. [8] 刘殿魁,田家勇.SH波对界面圆柱形弹性夹杂散射及动应力集中[J].爆炸与冲击,1991,9(2):115—123. [9] 崔志刚,邹永超,刘殿魁.SH波对圆弧形凸起地形的散射[J].地震工程与工程振动,1998,18(4):8—14. [10] 曹欣荣,宋天舒,刘殿魁.任意形状凸起地形对平面SH波的散射[J].应用数学和力学,2001,22(9):976—982. [11] 陈志刚, 刘殿魁.带凹陷的弹性半空间表面作用反平面简谐线源载荷时的Green函数[J].哈尔滨工程大学学报,2002,23(4):103—109. [12] 史守峡. SH波对结构表面上含有多个半圆形介质夹杂的散射[J].航空学报,2001,22(1):19—23. [13] 房营光.相邻多个浅圆弧凹陷地形对平面SH波散射的级数解[J].应用数学和力学,1995,16(7):615—624. [14] 汪越胜,王铎.SH波对有部分脱胶衬砌的圆形孔洞的散射[J].力学学报,1994,26(4):462—469. [15] 袁晓铭, 廖振鹏.任意圆弧形凸起地形对平面SH波的散射[J]. 地震工程与工程振动,1996,16(2):1—13. [16] 袁晓铭, 廖振鹏.圆弧型沉积盆地对平面SH波的散射[J].华南地震,1995,15(2):1—8. [17] 梁建文, 张郁山,顾晓鲁,等.圆弧型层状凹陷地形对平面SH波的散射[J].振动工程学报,2003,16(2):158—165. [18] 袁晓铭.地表下圆弧形加塞区平面散射对地面运动的影响[J]. 地球物理学报,1996,39(3):373—381. [19] 房营光. 二维地表相临多个半圆弧沟谷对SH波的散射[J]. 地震工程与工程振动,1995,15(1):85—91. [20] 何钟怡,樊洪明,刘有军.SH波绕界面孔的散射[J].力学学报,2002,34(1):68—75.
计量
- 文章访问数: 2736
- HTML全文浏览量: 159
- PDF下载量: 721
- 被引次数: 0