Compactly Supported Non-Tensor Product Form Two Dimension Wavelet Finite Element
-
摘要: 分析论述了构造非张量积形式二维Daubechies小波的几条定理,在此基础上着重构造了具有紧支撑的非张量积形式二维小波,随后用具有紧支撑的非张量积二维小波有限元去解弹性薄板挠度问题,给出了误差阶,最后列举了一个数值例子.Abstract: Some theorems of compactly supported non-tensor product form two dimension Daubechies wavelet was analysed carefully. Compactly supported non-tensor product form two dimension wavelet was constructed, then non-tensor product form two dimension wavelet finite element was used to solve the deflection problem of elastic thin plate. The error order was researched. A numerical example was given at last.
-
[1] Daubechies Ingrid.Orthonormal bases of compactly supported wavelets[J].Comm Pure Appl Math,1988,41(7):909—996. doi: 10.1002/cpa.3160410705 [2] Mallat Stephane G. Multiresolution approximation and wavelet orthonormal bases of L2(R)[J].Trans Amer Math Soc,1989,315(1):69—87. [3] 金坚明. 二维小波函数中gn的分析与具体计算[J].甘肃科学学报,2002,14(3):11—14. [4] 金坚明.二维共轭滤波器相应定理的探讨[J].西北师范大学学报(自然科学版),2001,37(3):12—18. [5] 金坚明.二维共轭滤波器及其构造[J].西北师范大学学报(自然科学版),2002,38(1):19—25. [6] DING Xuan-zhou.Construction of real-valued wavelets symmetry[J].Journal of Approximation Theory,1995,81(3):323—331. doi: 10.1006/jath.1995.1054 [7] 梁学章,何甲兴,王新民,等.小波分析[M].北京:国防工业出版社,2005. [8] 周又和,王记增,郑晓静.小波伽辽金有限元法在梁板结构中的应用[J].应用数学和力学,1998,19(8):697—706. [9] 石钟慈.样条有限元[J].计算数学,1979,1(1):50—72. [10] Strang G,Fix G J.An Analysis of the Element Mothod[M].New York: Academic Press, 1973. [11] 金坚明.线性板问题中的有限元法[M].兰州:兰州大学出版社,1997. [12] 清华大学应用数学系《现代应用数学手册》编委会. 现代应用数学手册·计算方法分册[M].北京:北京出版社,1990.
计量
- 文章访问数: 2864
- HTML全文浏览量: 160
- PDF下载量: 633
- 被引次数: 0