留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称迭层矩形板的平面应力分析

杨端生 黄炎 任仙海

杨端生, 黄炎, 任仙海. 对称迭层矩形板的平面应力分析[J]. 应用数学和力学, 2006, 27(12): 1506-1512.
引用本文: 杨端生, 黄炎, 任仙海. 对称迭层矩形板的平面应力分析[J]. 应用数学和力学, 2006, 27(12): 1506-1512.
YANG Duan-sheng, HUANG Yan, REN Xian-hai. Analysis of Symmetric Laminated Rectangular Plates in Plane Stress[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1506-1512.
Citation: YANG Duan-sheng, HUANG Yan, REN Xian-hai. Analysis of Symmetric Laminated Rectangular Plates in Plane Stress[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1506-1512.

对称迭层矩形板的平面应力分析

基金项目: 国家自然科学基金资助项目(19872072)
详细信息
    作者简介:

    杨端生(1957- ),男,湖南永州人,教授(联系人.Tel:+86-731-2290375;E-mail:ydsyj@163.com);黄炎(1924- ),男,湖南长沙人,教授.

  • 中图分类号: O343.9

Analysis of Symmetric Laminated Rectangular Plates in Plane Stress

  • 摘要: 常用的对称迭层板为各向异性板.根据平面应力问题的基本方程精确地用应力函数解法求得了各向异性板的一般解析解.推导出平面内应力和位移的一般公式,其中积分常数由边界条件来决定.一般解包括三角函数和双曲函数组成的解,它能满足4个边为任意边界条件的问题.还有代数多项式解,它能满足4个角的边界条件.因此一般解可用以求解任意边界条件下的平面应力问题.以4边承受均匀法向和切向载荷以及非均匀法向载荷的对称迭层方板为例,进行了计算和分析.
  • [1] Kalmanok A C.Structure Mechanics of Plates[M].Moscow: Architecture Press, 1950.
    [2] 黄炎.弹性薄板理论[M].长沙:国防科技大学出版社,1992.
    [3] 张承宗.复合材料板壳结构力学求解新体系[D].博士学位论文. 武汉:海军工程学院,1995.
    [4] 姚伟岸,苏滨,钟万勰.基于相似性原理的正交各向异性板弯曲Hamilton体系[J].中国科学,E辑,2001,31(4):342—347.
    [5] Lekhnitskij S G.Anisotropic Plates[M].New York: Gordon and Breach Press,1968.
    [6] 张承宗,杨光松.各向异性板结构横向弯曲一般解析解[J].力学学报,1996,28(4):429—440.
    [7] Reddy J N.Mechanics of Laminated Composite Plate[M].Boca Raton, FL:CRC Press,1997.
    [8] 杨端生,潘军,黄炎.各向异性矩形薄板弯曲问题的一般解[J].计算力学,2002,19(3):286—290.
    [9] Huang Y, Zhang X J.General analytical solution of transverse vibration for orthotropic rectangular thin plates[J].Journal of Marine Science and Application,2002,1(2):78—82. doi: 10.1007/BF02935845
    [10] 程耿东.关于复合材料方板对称性的讨论[J].力学与实践,1985,7(6):35—38.
    [11] Jones R M.Mechanics of Composite Materials[M].New York:McGraw-Hill Press,1975.
  • 加载中
计量
  • 文章访问数:  2679
  • HTML全文浏览量:  131
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-04-19
  • 修回日期:  2006-07-24
  • 刊出日期:  2006-12-15

目录

    /

    返回文章
    返回