留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-Eta-单调映像和解广义隐似变分包含的预解算子技巧

张清邦 丁协平

张清邦, 丁协平. g-Eta-单调映像和解广义隐似变分包含的预解算子技巧[J]. 应用数学和力学, 2007, 28(1): 9-16.
引用本文: 张清邦, 丁协平. g-Eta-单调映像和解广义隐似变分包含的预解算子技巧[J]. 应用数学和力学, 2007, 28(1): 9-16.
ZHANG Qing-bang, DING Xie-ping. g-Eta-Monotone Mapping and Resolvent Operator Technique for Solving Generalized Implicit Variational-Like Inclusions[J]. Applied Mathematics and Mechanics, 2007, 28(1): 9-16.
Citation: ZHANG Qing-bang, DING Xie-ping. g-Eta-Monotone Mapping and Resolvent Operator Technique for Solving Generalized Implicit Variational-Like Inclusions[J]. Applied Mathematics and Mechanics, 2007, 28(1): 9-16.

g-Eta-单调映像和解广义隐似变分包含的预解算子技巧

基金项目: 四川省教育厅重点科研基金资助项目(2003A081)
详细信息
    作者简介:

    张清邦(1972- ),男,四川南江人,博士(联系人.E-mail:q.b.zhang@emails.bjut.edu.cn).

  • 中图分类号: O177.91

g-Eta-Monotone Mapping and Resolvent Operator Technique for Solving Generalized Implicit Variational-Like Inclusions

  • 摘要: 引入一类新的g-Eta-单调映像和一类涉及g-Eta-单调映像的广义隐似变分包含;定义了g-Eta-单调映像的预解算子,并证明了其Lipschitz连续性;分析和给出了这类涉及g-Eta-单调映像的广义隐似变分包含的迭代算法,并证明了其收敛性.
  • [1] Noor M A. Generalized set-valued variational inclusions and resolvent equations[J].J Math Anal Appl,1998,228(1):206-220. doi: 10.1006/jmaa.1998.6127
    [2] DING Xie-ping. Generalized implicit quasivariational inclusions with fuzzy set-valued mapping[J].Comput Math Applic,1999,38(1):71-79.
    [3] DING Xie-ping. Generalized quasi-variational-like inclusions with fuzzy mapping and nonconvex functionals[J].Adv Nonlinear Var Inequal,1999,2(2):13-29.
    [4] DING Xie-ping,Park J Y.A new class of generalized nonlinear implicit quasivariational inclusions with fuzzy mapping[J].J Comput Appl Math,2002,138(2):243-257. doi: 10.1016/S0377-0427(01)00379-X
    [5] DING Xie-ping.Algorithms of solutions for completely generalized mixed implicit quasi-variational inclusions[J].Appl Math Comput,2004,148(1):47-66. doi: 10.1016/S0096-3003(02)00825-1
    [6] Liu L W,Li Y Q.On generalized set-valued variational inclusions[J].J Math Anal Appl,2001,261(1):231-240. doi: 10.1006/jmaa.2001.7493
    [7] FANG Ya-ping,HUANG Nan-jing.H-monotone operator and resolvent operator technique for variational inclusions[J].Appl Math Comput,2003,145(2/3):795-803. doi: 10.1016/S0096-3003(03)00275-3
    [8] Lee C H, Ansari Q H, Yao J C. Aperturbed algorithms for strongly nonlinear variational-like inclusion[J].Bull Austral Math Soc,2000,62(3):417-426. doi: 10.1017/S0004972700018931
    [9] DING Xie-ping.Generalized quasi-variational-like inclusions with nonconvex functionals[J].Appl Math Comput,2001,122(3):267-282. doi: 10.1016/S0096-3003(00)00027-8
    [10] Noor M A. Nonconvex functions and variational inequalities[J].J Optim Theory Appl,1995,87(3):615-630. doi: 10.1007/BF02192137
    [11] DING Xie-ping,LOU Chung-lin.Perturbed proximal point algorithms for general quasi-variational-like inclusions[J].J Comput Appl Math,2000,113(1/2):153-165. doi: 10.1016/S0377-0427(99)00250-2
    [12] HUANG Nan-jing,FANG Ya-ping.A new class of general variational inclusions involving maximal η-monotone mappings[J].Publ Math Debrecen,2003,62(1/2):83-98.
    [13] DING Xie-ping.Predictor-corrector iterative algorithms for solving generalized mixed variational-like inequalities[J].Appl Math Comput,2004,152(3):855-865. doi: 10.1016/S0096-3003(03)00602-7
    [14] Nadler S B. Mutivalued contraction mapping[J].Pacific J Math,1969,30(3):457-488.
  • 加载中
计量
  • 文章访问数:  2533
  • HTML全文浏览量:  102
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-12-17
  • 修回日期:  2006-10-11
  • 刊出日期:  2007-01-15

目录

    /

    返回文章
    返回