留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带梯度吸收项的快扩散方程的自相似奇性解

石佩虎 王明新

石佩虎, 王明新. 带梯度吸收项的快扩散方程的自相似奇性解[J]. 应用数学和力学, 2007, 28(1): 99-106.
引用本文: 石佩虎, 王明新. 带梯度吸收项的快扩散方程的自相似奇性解[J]. 应用数学和力学, 2007, 28(1): 99-106.
SHI Pei-hu, WANG Ming-xin. Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms[J]. Applied Mathematics and Mechanics, 2007, 28(1): 99-106.
Citation: SHI Pei-hu, WANG Ming-xin. Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms[J]. Applied Mathematics and Mechanics, 2007, 28(1): 99-106.

带梯度吸收项的快扩散方程的自相似奇性解

基金项目: 国家自然科学基金资助项目(10471022);教育部科学技术基金(重点)资助项目(104090)
详细信息
    作者简介:

    石佩虎(1967- ),男,湖南省花垣县人,副教授,博士(联系人.E-mail:sph2106@yahoo.com.cn).

  • 中图分类号: O175.26

Self-Similar Singular Solution of Fast Diffusion Equation With Gradient Absorption Terms

  • 摘要: 研究一类带有非线性梯度吸收项的快速扩散方程的自相似奇性解.通过自相似变换,该自相似奇性解满足一个非线性常微分方程的边值问题,再利用打靶法技巧研究该常微分方程初值问题解的存在唯一性并根据初值的取值范围对其解进行了分类.通过对这些解类的性质的分析研究,得出了自相似强奇性解存在唯一性的充分必要条件,此时自相似奇性解就是强奇性解.
  • [1] Kardar M,Parisi G,Zhang Y C.Dynamic scaling of growing interface[J].Phys Rev Lett,1986,56(9):889-892. doi: 10.1103/PhysRevLett.56.889
    [2] Krug J,Spohn H.Universisality classes for deterministic surface growth[J].Phys Rev A,1988,38(8):4271-4283. doi: 10.1103/PhysRevA.38.4271
    [3] Bebachour S,Laurenot Ph.Very singular solutions to a nonliear parabolic equation with absorption. I. Existence[J].Proc the Royal Soc Edinberg,2001,131(A)(1):27-44. doi: 10.1017/S0308210500000779
    [4] QI Yuan-wei,WANG Ming-xin.The self-similar profiles of generalized KPZ equation[J].Pacific J of Math,2001,201(1):223-240. doi: 10.2140/pjm.2001.201.223
    [5] Brezis H,Friedman A.Nonlinear parabolic equation involving measures as initial conditions[J].J Math Pures Appl,1983,62(1):73-97.
    [6] Brezis H,Peletier L A,Terman D.A very singular solution of the heat equation with absorption[J].Arch Rational Mech Anal,1986,95(3):185-209.
    [7] CHEN Xin-fu,QI Yuan-wei,WANG Ming-xin.Self-similar singular solution of a p-Laplacian evolution[J].J Differential Equations,2003,190(1):1-15. doi: 10.1016/S0022-0396(02)00039-6
    [8] Kamin S,Vazquez J L.Singular solutions of some nonlinear parabolic equation[J].J Anal Math,1992,59(1):51-74. doi: 10.1007/BF02790217
    [9] Leoni G.A very singular solution for the porous media equation ut=Δ(um)-up when 0<m<1[J].J Diff Eqns,1996,132(2):353-376. doi: 10.1006/jdeq.1996.0184
    [10] Peletier L A,WANG Jun-yu.A very singular solution of a quasilinear degenerate diffusion equation with absorption[J].Trans Amer Math Soc,1988,307(2):813-826. doi: 10.1090/S0002-9947-1988-0940229-6
    [11] CHEN Xin-fu,QI Yuan-wei,WANG Ming-xin.Long time behavior of solutions to p-Laplacian equation with absorption[J].SIAM J Appl Math,2003,35(1):123-134. doi: 10.1137/S0036141002407727
    [12] Escobedo M,Kavian O,Matano H.Large time behavior of solutions of a dissipative semilinesr heat equation[J].Commun Partial Diff Eqns,1995,20(8):1427-1452. doi: 10.1080/03605309508821138
    [13] Herraiz L.Asymptotic behaviour of solutions of some semilinear parabolic problems[J].Ann Inst Henri Poicaré,1999,16(1):49-104.
    [14] Kwak M.A porous media equation with absorption I. Long time behaviour[J].J Math Anal & Appl,1998,223(1):96-110.
  • 加载中
计量
  • 文章访问数:  2700
  • HTML全文浏览量:  165
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-05-28
  • 修回日期:  2006-10-09
  • 刊出日期:  2007-01-15

目录

    /

    返回文章
    返回