留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高体积百分比颗粒增强聚合物材料的有效粘弹性性质

李丹 胡更开

李丹, 胡更开. 高体积百分比颗粒增强聚合物材料的有效粘弹性性质[J]. 应用数学和力学, 2007, 28(3): 270-280.
引用本文: 李丹, 胡更开. 高体积百分比颗粒增强聚合物材料的有效粘弹性性质[J]. 应用数学和力学, 2007, 28(3): 270-280.
LI Dan, HU Geng-kai. Effective Viscoelastic Behavior of Particulate Polymer Composites at Finite Concentration[J]. Applied Mathematics and Mechanics, 2007, 28(3): 270-280.
Citation: LI Dan, HU Geng-kai. Effective Viscoelastic Behavior of Particulate Polymer Composites at Finite Concentration[J]. Applied Mathematics and Mechanics, 2007, 28(3): 270-280.

高体积百分比颗粒增强聚合物材料的有效粘弹性性质

基金项目: 国家自然科学基金资助项目(10325210)
详细信息
    作者简介:

    李丹(1982- ),女,山西人,博士;胡更开(1964- ),男,黑龙江人,教授,博士,博士生导师(联系人.Tel:+86O10O68912731;Fax:+86010068914780;E-mail:hugeng@bit.edu.cn).

  • 中图分类号: O345;TB332

Effective Viscoelastic Behavior of Particulate Polymer Composites at Finite Concentration

  • 摘要: 聚合物材料通常表现为粘弹性性质.为了改进聚合物材料的力学性能,通常将某种无机材料以颗粒或纤维的形式填充到聚合物中,从而得到增强、增韧的聚合物基复合材料.提出了一个新的细观力学模型,用于预测颗粒增强聚合物复合材料的有效粘弹性性质,尤其针对高体积百分比的颗粒夹杂复合材料,该方法基于Laplace变换和双夹杂相互作用的弹性模型.计算了玻璃微珠/ED-6复合材料的有效松弛模量以及恒应变率下的应力应变关系.计算结果表明在高体积百分比下该文方法比基于Mori Tanaka方法预测的粘弹性效应明显减弱.
  • [1] Johnson H D. Mechanical properties of high explosives[R]. Mason and Hanger-Silas Mason Company Inc,Pantex Plant Report,,1974,15.
    [2] Johnson H D.Mechanical properties of LX-10-1 evaluated with diametric disc test[R]. Mason and Hanger-Silas Mason Company Inc,Pantex Plant Report,1979,14.
    [3] 董海山,周芬芬.高能炸药及相关物性能[M].北京:科学出版社,1989.
    [4] Hashin Z.Complex moduli of viscoelastic composite-I. General theory and application to particulate composites[J].Int J Solids Struct,1970,6(5):539-552. doi: 10.1016/0020-7683(70)90029-6
    [5] Wang Y M,Weng G J.Influence of inclusion shape on the overall viscoelastic behavior of composites [J].J Appl Mech,1992,59(3): 510-518. doi: 10.1115/1.2893753
    [6] Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metall Mater,1973,21(5):571-574. doi: 10.1016/0001-6160(73)90064-3
    [7] Brinson L C,Lin W S.Comparison of micromechanical methods for effective properties of multiphase visoelastic composites[J].Composite Structures,1998,41(3/4):353-367. doi: 10.1016/S0263-8223(98)00019-1
    [8] Ju J W,Chen T M.Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities[J].Acta Mech,1994,103(1/4):123-144. doi: 10.1007/BF01180222
    [9] Ma H L,Hu G K,Huang Z P.A micromechanical method for particulate composites with finite particle concentration[J].Mech Mater,2004,36(4):359-368. doi: 10.1016/S0167-6636(03)00065-6
    [10] Naguib H E,Park C B,Panzer U,et al.Strategies for achieving ultra low-density polypropylene foams[J].Polymer Engineering and Science,2002,42(7):1481-92. doi: 10.1002/pen.11045
    [11] Hershey A V.The elasticity of an isotropic aggregate of anisotropic cubic crystals[J].J Appl Mech,1954,21(3):226-240.
    [12] Christensen R M,L0 K H.Solutions for effective shear properties in three phase space and cylinder model[J].J Mech Phys Solids,1979,27(4): 315-330. doi: 10.1016/0022-5096(79)90032-2
    [13] Ponte,Castaeda P,Willis J R.Effect of spatial distribution on the effective behavior of composite materials and cracked media[J].J Mech Phys Solids,1995,43(12):1919-1951. doi: 10.1016/0022-5096(95)00058-Q
    [14] Berryman J G,Berge P A.Critique of two explicit schemes for estimating elastic properties of multiphase composites[J].Mechanics of Materials,1996,22(2):149-164. doi: 10.1016/0167-6636(95)00035-6
    [15] Kuster G T,Toksoz M N.Velocity and attenuation of seismic waves in two-phase media: I Theoretical formulation[J].Geophysics,1974,39(5): 587-606. doi: 10.1190/1.1440450
    [16] Hori M,Nemat-Nasser S.Double-inclusion model and overall moduli of multi-phase composite[J].Mech Mater,1993,14(3):189-206. doi: 10.1016/0167-6636(93)90066-Z
    [17] Zheng Q S,Du D X.An explicit and universally applicable estimate for the effective properties of multiphase composite which accounts for inclusion distribution[J].J Mech Phys Solids,2001,49(11):2765-2788. doi: 10.1016/S0022-5096(01)00078-3
    [18] Hu G K,Weng G J.The connections between the double inclusion model and the Ponte Castaneda-Willis,Mori-Tanaka, and Kuster-Toksoz Model[J].Mech Mater,2000,32(8):495-503. doi: 10.1016/S0167-6636(00)00015-6
    [19] Hu G K,Weng G J.Some reflections on the Mori-Tanaka and Ponte Castaneda-Willis methods with randomly oriented ellipsoidal inclusions[J].Acta Mechanica,2000,140(1):31-40. doi: 10.1007/BF01175978
    [20] 胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3):361-393.
    [21] Molinari A,Mouden M E.The problem of elastic inclusion at finite concentration[J].Int J Solids Struct,1996,33(20/22):3131-3150. doi: 10.1016/0020-7683(95)00275-8
    [22] Zeller R,Dederichs P H.Elastic constant of polycrystals[J].Phys Status Solidi B,1973,55(2): 831-842. doi: 10.1002/pssb.2220550241
    [23] Eshelby J D.The determining of the elastic field of an ellipsoidal inclusion and related problem[J].Proc Roy Soc Lond Ser A,1957,241(1226):376-396. doi: 10.1098/rspa.1957.0133
    [24] Percus J K,Yevick G J.Analysis of classical statistical mechanics by means of collective coordinates[J].Physical Review,1958,110(1):1-13. doi: 10.1103/PhysRev.110.1
    [25] 周萧明,胡更开.高体积分数颗粒增强复合材料有效线性与非线性介电性质的研究[J].应用数学和力学,2006,27(8):891-898.
    [26] Skudra A M,Auzukalns Ya V.Creep and long-term strength of unidirectional reinforced plastics in compression[J].Poly Mech, 1970,6(5):718-722.
  • 加载中
计量
  • 文章访问数:  2923
  • HTML全文浏览量:  145
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-10
  • 修回日期:  2006-12-31
  • 刊出日期:  2007-03-15

目录

    /

    返回文章
    返回