Mathematical Analysis of EEP Method for One-Dimensional Finite Element Postprocessing
-
摘要: 利用一维投影型插值与有限元超收敛基本估计,对一类两点边值问题,严格证明了袁驷等人由单元能量投影(EEP)法获得的节点恢复导数,当有限元空间的次数不超过4时,具有最佳阶超收敛.理论分析圆满地解释了已有的数值结果.Abstract: Fora class of two-point boundary value problems, by virtue of one-dimensional projection interpolation and finite element superconvergence fundamental estimations, it was proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method had the optimal order superconvergence on condition that the degree of finite element space is no more than 4. The theoretical analysis coincides with the reported numerical results.
-
[1] ZHANG Tie.The derivative patch interpolating recovery technique and superconvergence[J].Chinese J Numer Math Appl,2001,(2):1-10. [2] ZHU Qi-ding,ZHAO Qing-hua. SPR technique and finite element correction[J].Numer Math,2003,96(4):185-196. doi: 10.1007/s00211-003-0474-9 [3] CHEN Chuan-miao,XIE Zi-qing,LIU Jing-hong.New error expansion for one dimensional finite element and ultraconvergence[J].Numer Math J Chinese Univ,2005,14(4):296-304. [4] 袁驷,王玫.一维有限元后处理超收敛解答的EEP法[J].工程力学,2004,21(2):1-9. [5] 林群,朱起定.有限元预处理与后处理理论[M].上海:上海科学技术出版社,1994. [6] Douglas J,Dupont T.Galerkin approximations for the two point boundary problems using continuous,piecewise polynomial spaces[J].Numer Math,1974,22:99-109. doi: 10.1007/BF01436724
计量
- 文章访问数: 2815
- HTML全文浏览量: 160
- PDF下载量: 847
- 被引次数: 0