Stability of Theoretical Model for Catastrophic Weather Prediction
-
摘要: 详细讨论、分析了涉及灾害性天气预报的理论模式的稳定性,这些模式包括:非静力完全弹性方程组、滞弹性方程组.证明了非静力完全弹性方程组在无穷可微函数类中是稳定方程;滞弹性方程组则因为对流体的特殊假设,改变了连续方程的形式,于是出现了“流体为粘性与不可压假设的匹配”现象,从而使在实际预报工作中占有重要地位的这一类重要方程组与Navier-Stokes方程呈现了相同拓扑性质的不稳定性,而这是在数值预报工作中首先应该避免的.据此提出了如何修改应用模式的参考意见.
-
关键词:
- 非静力完全弹性方程组 /
- 滞弹性方程 /
- 不稳定方程 /
- 匹配
Abstract: Stability related to theoretical model for catastrophic weather prediction that includes non-hydrostatic perfect elastic model, anelastic model was discussed and analyzed in detail. It was proved that in infinitely differentiable function class non-hydrostatic perfect elastic equations set is stable. However, for anelastic equations set, its continuity equation is changed in form because of the particular hypothesis for fluid, so/the matching consisting of both viscosity coefficient and incompressible assumption-appears, thereby the most important equations set of this class in practical prediction shows the same instability in topological property as Navier-Stokes equation, which should be avoided first in practical numerical prediction. In light of this, the referenced suggestions to amend applied model are finally presented. -
[1] 张玉玲.中尺度大气动力学引论[M].北京:气象出版社,1999,1-16,291-298. [2] 沈桐立,田永祥,葛孝贞,等.数值天气预报[M].北京:气象出版社,2003,355-380. [3] 吕美仲,侯志明,周毅.动力气象[M].北京:气象出版社,2004,37-54. [4] 刘式适,刘式达.大气动力学[M].北京:北京大学出版社,1999, 1-33. [5] SHIH Wei-shu.Stratifications et Equations aux Derivees Partielles, Singularities of Maps,and Applications to Differential Equations[M].Collections Travaux en Cours.54.Paris:Hermann,1997, 95-124. [6] 施惟慧,陈达段,何幼桦.分层理论与非线性偏微分方程基础[M].上海:上海大学出版社,2001, 10-52,134-189. [7] Landau L,Lifchitz E.Mecanique des Fluides[M].Moscow:Editions Mir,1971,62-122.
计量
- 文章访问数: 2530
- HTML全文浏览量: 157
- PDF下载量: 689
- 被引次数: 0