留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有两个驰豫时间的热弹性立方晶体材料中平面波的传播

R·库玛 M·辛

R·库玛, M·辛. 具有两个驰豫时间的热弹性立方晶体材料中平面波的传播[J]. 应用数学和力学, 2007, 28(5): 561-574.
引用本文: R·库玛, M·辛. 具有两个驰豫时间的热弹性立方晶体材料中平面波的传播[J]. 应用数学和力学, 2007, 28(5): 561-574.
Rajneesh Kumar, Manjeet Singh. Propagation of Plane Waves in Thermoelastic Cubic Crystal Material With Two Relaxation Times[J]. Applied Mathematics and Mechanics, 2007, 28(5): 561-574.
Citation: Rajneesh Kumar, Manjeet Singh. Propagation of Plane Waves in Thermoelastic Cubic Crystal Material With Two Relaxation Times[J]. Applied Mathematics and Mechanics, 2007, 28(5): 561-574.

具有两个驰豫时间的热弹性立方晶体材料中平面波的传播

基金项目: 印度CSIR资助项目
详细信息
    作者简介:

    R·库玛,教授,博士(联系人.Tel:+91-6416-120992;E-mail:rajneesh_kuk@rediffmail.com);M·辛(E-mail:manjeet-kuk@indiatimes.com).

  • 中图分类号: O343.6

Propagation of Plane Waves in Thermoelastic Cubic Crystal Material With Two Relaxation Times

  • 摘要: 研究具有两个驰豫时间的、两个不同弹性和热性质的、广义传热立方晶体固体半空间的有缺陷结合面上,热弹性平面波的反射和折射问题.具有两个驰豫时间的广义热弹性理论,是1972年由Green和Lindsay提出并应用于问题的研究.对有缺陷边界,给出了反射系数和折射系数(即反射波和折射波振幅与入射波振幅之比)的表达式,并推演了法向刚性边界、横向刚性边界、接触传热边界、滑动边界和结合面边界时的表达式.给出了在不同边界条件及出射角时,不同的反射波和折射波的振幅比,在不同的入射波时的变化图.发现反射波和折射波振幅比受到介质刚性和热性质的影响.
  • [1] Jones J P, Whittier J P. Waves in a flexible bonded interface[J].J Appl Mech,1967,34(4):905-909. doi: 10.1115/1.3607854
    [2] Murty G S. A theoretical model for the attenuation and dispersion of Stonley waves at the loosely bonded interface of elastic half-space[J].Phys Earth and Planetary Interiors,1975,11(1):65-79. doi: 10.1016/0031-9201(75)90076-X
    [3] Nayfeh A H, Nassar E M. Simulation of the influence of bonding materials on the dynamic behaviour of laminated composites[J].J Appl Mech,1978,45(4):822-828. doi: 10.1115/1.3424426
    [4] Schoenberg M. Elastic wave behavior across linear slip interfaces[J].J Acoust Soc Amer,1980,68(5):1516-1521. doi: 10.1121/1.385077
    [5] Rokhlin S I, Hefets M, Rosen M. An elastic interface wave guided by a thin film between two solids[J].J Appl Phys,1980,51(7):3579-3582. doi: 10.1063/1.328208
    [6] Rokhlin S I. Adhesive Joint characterization by ultrasonic surface and interface waves[A].In:Mittal K L Ed.Adhesive Joints:Formation, Characteristics and Testing[C].New York:Plenum,1984:307-345.
    [7] Pilarski A, Rose J L. A transverse wave ultrasonic oblique-incidence technique for interface weakness detection in adhesive bonds[J].J Appl Phys,1988,63(2):300-307. doi: 10.1063/1.340294
    [8] Baik J M, Thompson R B. Ultrasonic scattering from imperfect interfaces a quasi-static model[J].J Nondestr Eval,1984,4(3/4):177-196. doi: 10.1007/BF00566223
    [9] Angel Y C, Achenbach J D. Reflection and transmission of elastic waves by a periodic array of crack[J].J Appl Mech,1985,52(1):33-41. doi: 10.1115/1.3169023
    [10] Cheng Z Q, Jemah A K, Williams F W. Theory for multilayered anisotropic plates with weakened interfaces[J].J Appl Mech,1996,63(4):1019-1026. doi: 10.1115/1.2787221
    [11] Lavrentyev A I, Rokhlin S I. Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids[J].J Acoust Soc Amer,1998,103(2):657-664. doi: 10.1121/1.423235
    [12] Cheng Z Q, He L H, Kitipornchai S. Influence of imperfect interfaces on bending and vibration of laminated composite shells[J].Internat J Solids and Structures,2000,37(15):2127-2150. doi: 10.1016/S0020-7683(98)00294-7
    [13] Chen W Q, Ying J, Cai J B,et al. Benchmark solution of imperfect angle-ply laminated rectangular plated in cylindrical bending with surface piezoelectric layers as actuator and sensor[J].Computers and Structures,2004,82(22):1773-1784. doi: 10.1016/j.compstruc.2004.05.011
    [14] Chen W Q, Wang Y F, Cai J B,et al. Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces[J].Internat J Solids and Structures,2004,41(9/10):2429-2446. doi: 10.1016/j.ijsolstr.2003.12.018
    [15] Chen W Q, Cai J B, Ye G R. Responses of cross-ply laminates with viscous interfaces in cylindrical bending[J].Computer Methods in Appl Mech and Engng,2005,194(6/8):823-835. doi: 10.1016/j.cma.2004.06.016
    [16] Chen W Q, Lee K Y. Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces[J].Arch Appl Mech,2005,74(7):466-476. doi: 10.1007/s00419-004-0357-2
    [17] Lord H W, Shulman Y. A generalized dynamical theory of Thermoelasticity[J].J Mech Phys Solids,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [18] Green A E, Lindsay K A. Thermoelasticity[J].J Elasticity,1972,2(1):1-7. doi: 10.1007/BF00045689
    [19] Dhaliwal R S, Sherief H H. Generalized thermoelasticity for anisotropic media[J].Q Appl Math,1980,38(1):1-8.
    [20] Deresiewicz H. Effect of boundaries on waves in a thermoelastic solid:Reflexion of plane waves from a plane boundary[J].J Mech Phys Solids,1960,8(3):164-172. doi: 10.1016/0022-5096(60)90035-1
    [21] Deresiewicz H. Corrections and additions:effect of boundaries on waves in a thermoelastic solid[J].J Mech Phys Solids,1962,10(2):179-181. doi: 10.1016/0022-5096(62)90020-0
    [22] Sinha A N, Sinha S B. Reflection of thermoelastic waves at a solid half-space with thermal relaxation[J].J Phys Earth,1974,22:237-244. doi: 10.4294/jpe1952.22.237
    [23] Beevers C E, Bree J. A note on wave reflection problems in linear thermoelasticity[J].J Math Phys Sci,1975,9:355-362.
    [24] Sharma J N. Reflection of thermoelastic waves from the stress-free insulated boundary of an anisotropic half-space[J].Indian J Pure Appl Math,1988,19(3):294-304.
    [25] Sinha S B, Elsibai S A. Reflection of thermoelastic waves at a solid half-space with two relaxation times[J].J Thermal Stresses,1996,19(7):749-762. doi: 10.1080/01495739608946205
    [26] Sinha S B, Elsibai K A. Reflection and Refraction of thermoelastic waves at an interface of two semi-infinite media with two relaxation times[J].J Thermal Stresses,1997,20(2):129-145. doi: 10.1080/01495739708956095
    [27] Singh B, Kumar R. Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic half-space[J].Internat J Engrg Sci,1998,36(7/8):865-890. doi: 10.1016/S0020-7225(97)00079-7
    [28] Singh B, Kumar R. Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic half-space with stretch[J].Indian J Pure Appl Math,1998,29(6):657-669.
    [29] Singh B, Kumar R. Wave propagation in a generalized thermo-microstretch elastic solid[J].Internat J Engng Sci,1998,36(7/8):891-912. doi: 10.1016/S0020-7225(97)00099-2
    [30] Abd-Alla Abo-El-Nour N, Al-Dawy A S Amira. The reflection phenomena of SV-waves in generalized thermoelastic medium[J].Internat J Math Math Sci,2000,23(8):529-546. doi: 10.1155/S0161171200004221
    [31] Singh B. Wave Propagation in an anisotropic generalized thermoelastic solid[J].Indian J Pure Applied Math,2003,34(10):1479-1485.
    [32] Singh B. Plane waves in a thermally conducting viscous liquid[J].Sadhana,2004,29(1):27-34. doi: 10.1007/BF02706999
    [33] Kumar R, Sharma J N. Reflection of plane waves from the boundaries of a micropolar thermoelastic half-space without energy dissipation[J].Internat J Appl Mech Engrg,2005,10(4):631-645.
    [34] Henneke II Edmund G. Reflection-Refraction of a stress wave at a plane boundary between anisotropic media[J].J Acoust Soc Amer,1972,51(1):210-217. doi: 10.1121/1.1912832
    [35] Velasco V R, Garcia-Moliner F. Theory of surface waves in anisotropic cubic crystals[J].J Phys C:Solid St Phys,1980,13:2237-2256. doi: 10.1088/0022-3719/13/11/024
    [36] Atalar A. Reflection of ultrasonic waves at a liquid-cubic-solid interface[J].J Acoust SocAmer,1983,73(2):435-439. doi: 10.1121/1.388991
    [37] Sharma J N, Singh H. Propagation of generalized thermoelastic waves in cubic crystal[J].Arch Mech,1990,42(1):19-30.
    [38] Kumar R, Rani R. Elastodynamics of time harmonic sources in a thermally conducting cubic crystal[J].Internat J Appl Mech Engrg,2003,8(4):637-650.
    [39] Kumar R, Rani L. Deformation due to mechanical and thermal sources in generalized orthorhombic thermoelastic metrial[J].Sadhana,2004,29(5):429-447. doi: 10.1007/BF02703254
    [40] Kumar R, Ailawalia P. Time harmonic sources at micropolar thermoelastic medium possessing cubic symmetry with one relaxation time[J].European J Mech A/Solids,2006,25(2):271-282. doi: 10.1016/j.euromechsol.2005.09.004
    [41] 库玛 R, 额拉瓦尼亚 P. 具有立方对称性及两个弛豫时间的微极热弹性介质中调和时间源引起的变形[J].应用数学和力学,2006,27(6):690-700.
    [42] Sharma J N, Kumar V, Sud S P. Plane harmonic waves in orthorhombic thermoelastic materials[J].J Acoust Soc Amer,2000,107(1):293-305. doi: 10.1121/1.428347
  • 加载中
计量
  • 文章访问数:  2823
  • HTML全文浏览量:  131
  • PDF下载量:  579
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-02-16
  • 修回日期:  2007-02-06
  • 刊出日期:  2007-05-15

目录

    /

    返回文章
    返回