留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KGS格点系统的全局吸引子

尹福其 周盛凡 殷苌茗 肖翠辉

尹福其, 周盛凡, 殷苌茗, 肖翠辉. KGS格点系统的全局吸引子[J]. 应用数学和力学, 2007, 28(5): 619-630.
引用本文: 尹福其, 周盛凡, 殷苌茗, 肖翠辉. KGS格点系统的全局吸引子[J]. 应用数学和力学, 2007, 28(5): 619-630.
YIN Fu-qi, ZHOU Sheng-fan, YIN Chang-ming, XIAO Cui-hui. Global Attractor for KGS Lattice System[J]. Applied Mathematics and Mechanics, 2007, 28(5): 619-630.
Citation: YIN Fu-qi, ZHOU Sheng-fan, YIN Chang-ming, XIAO Cui-hui. Global Attractor for KGS Lattice System[J]. Applied Mathematics and Mechanics, 2007, 28(5): 619-630.

KGS格点系统的全局吸引子

基金项目: 国家自然科学基金资助项目(10471086)
详细信息
    作者简介:

    尹福其(1970- ),男,湖南湘潭人,博士(联系人.Fax:+86-732-8292400;E-mail:fuqiyine@xtu.edu.cn).

  • 中图分类号: O175.1;O175.7

Global Attractor for KGS Lattice System

  • 摘要: 考虑了对应于Klein-Gordon-Schrdinger方程的格点系统(KGS格点系统)的解的长时间行为.首先通过引入一个加权范数与采用解的“切尾”法,证明了全局吸引子的存在性.在此基础上,采用元素分解法与多面体的球覆盖性质, 得到了此吸引子的Kolmogorov δ-熵的上界的一个估计.最后,我们用有限维的常微分方程的全局吸引子逼近它.
  • [1] Chow S N,Mallet-Parat J,Shen W.Traveling waves in lattice dynamical systems[J].J Diff Equa,1998,149(2):248-291. doi: 10.1006/jdeq.1998.3478
    [2] Shen W.Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices[J].SIAM J Appl Math,1996,56(5):1379-1399. doi: 10.1137/S0036139995282670
    [3] Yu J, Collective behavior of coupled map lattices with asymmetrical coupling[J].Phys Lett A,1998,240(1/2):60-64.
    [4] Bates P W,Lu K,Wang B,Attractors for lattice dynamical systems[J].Int J Bifurcations and Chaos,2001,11(1):143-152.
    [5] ZHOU Sheng-fan.Attractor for second order lattice dynamical system[J].J Diff Equa,2002,179(2):605-624. doi: 10.1006/jdeq.2001.4032
    [6] Babin A V,Vishik M I.Attractors of Evolutionary Equations[M].Nauka, Moscow 1989; English transl stud Math Appl,Vol 25.Amsterdam:North Holland,1992.
    [7] GUO Bo-lin,LI Yong-sheng, Attractors for Klein-Gordon-Schrdinger Equation in R3[J].J Diff Equa,1997,136(1):356-377.
    [8] Lu K, Wang B,Attractor for Klein-Gordon-Schrdinger equation in unbounded domains[J].J Diff Equa,2001,170(1):281-316.
    [9] Chepyzhov, V V, Vishik M I.Kolmogorov's ε-entropy for the attractor of reaction-diffusion equation[J].Math Sbornik,1998,189(2):81-110. doi: 10.4213/sm301
    [10] ZHOU Sheng-fan.On dimension of the global attractor for damped nonlinear wave equation[J].J Math Phys,1999,40(3):1432-1438. doi: 10.1063/1.532813
    [11] Hale J K.Asymptotic Behavior of Dissipative Systems[M].Rhode Island:Amer Math Soc providence,1988.
    [12] Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].Appl Math Sci[STHZ]. 68[STBZ]. New York:Springer-Verlag,1988.
    [13] Hayashi N, Von Wahl W.On the global strong solutions of coupled Klein-Gordon-Schrdinger equations[J].J Math Soc Japan,1987,39(2):489-497.[JP3]. Lorentz G, GolitschekM, Makovoz Y.Constructive Approximation. Advanced Problem. Grundlehrender Mathematischen Wissenschaften[M].([Functional Principles of Mathematical Sciences]. Vol 304).Berlin:Springer-Verlag,1996. doi: 10.2969/jmsj/03930489
  • 加载中
计量
  • 文章访问数:  3113
  • HTML全文浏览量:  184
  • PDF下载量:  869
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-27
  • 修回日期:  2007-03-09
  • 刊出日期:  2007-05-15

目录

    /

    返回文章
    返回