留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义集值强非线性混合似变分不等式的辅助原理和三步迭代算法

徐海丽 郭兴明

徐海丽, 郭兴明. 广义集值强非线性混合似变分不等式的辅助原理和三步迭代算法[J]. 应用数学和力学, 2007, 28(6): 643-650.
引用本文: 徐海丽, 郭兴明. 广义集值强非线性混合似变分不等式的辅助原理和三步迭代算法[J]. 应用数学和力学, 2007, 28(6): 643-650.
XU Hai-li, GUO Xing-ming. Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(6): 643-650.
Citation: XU Hai-li, GUO Xing-ming. Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(6): 643-650.

广义集值强非线性混合似变分不等式的辅助原理和三步迭代算法

基金项目: 国家自然科学基金资助项目(10472061)
详细信息
    作者简介:

    徐海丽(1979- ),女,山西人,硕士(E-mail:ccjjwwjj@hotmail.com);郭兴明(1964- ),男,湖南人,教授,博士,博士生导师(联系人.Tel:+86O21O56331453;E-mail:xmguo@mail.shu.edu.cn).

  • 中图分类号: O177.1;O178

Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities

  • 摘要: 使用辅助原理技巧研究了一类广义集值强非线性混合变分不等式.证明了此类集值强非线性混合变分不等式辅助问题解的存在性和唯一性;构建了一个新的三步迭代算法,通过辅助原理技巧,构建并计算此类非线性混合变分不等式的近似解,进一步证明非线性混合变分不等式解的存在性以及由算法产生的三个序列的收敛性.所得结论推广了近年来许多混合变分不等式和准变分不等式以及他们的有关结果.
  • [1] Cubiotti P. Existence of solutions for lower semi-continuous quasi equilibrium problems[J].Comput Math Appl,1995,30(12):11-12.
    [2] Noor M A. Auxiliary principle for generalized mixed variational-like inequalities[J].J Math Anal Appl,1997,215(1):78-85.
    [3] Noor M A. Some recent advances in variational inequalities—Ⅰ[J].New Zealand J Math,1997,26(2):53-80.
    [4] Noor M A. Generalized variational-like inequalities[J].Math Comput Modelling,1998,27(3):93-101.
    [5] Panagiotopoulos P D,Stavroulakis G E. New types of variational principles based on the notion of quasi-differentiability[J].Acta Mech,1992,94(3/4):171-194.[JP2]. Panagiotopoulos P D.Inequality Problems in Mechanics and Applications[M].Boston: Birkhuser,1985. doi: 10.1007/BF01176649
    [7] Parida J,Sen A. A variational-like inequality for multi-functions with applications[J].J Math Anal Appl,1987,124(1):73-81. doi: 10.1016/0022-247X(87)90025-4
    [8] Tian G. Generalized quasi variational-like inequality problem[J].Math Oper Res,1993,18(3):752-764. doi: 10.1287/moor.18.3.752
    [9] Yao J C. The generalized quasi variational inequality problem with applications[J].J Math Anal Appl,1991,158(1):139-160. doi: 10.1016/0022-247X(91)90273-3
    [10] Yao J C. Existence of generalized variational inequalities[J].Oper Res Lett,1994,15(1):35-40. doi: 10.1016/0167-6377(94)90011-6
    [11] Huang N J. On the generalized implicit quasivariational inequalities[J].J Math Anal Appl,1997,216(1):197-210. doi: 10.1006/jmaa.1997.5671
    [12] Huang N J. Mann and Ishikwa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions[J].Comput Math Appl,1998,35(1):1-7.
    [13] Glowinski R, Lions J L,Tremolieres R.Numerical Analysis of Variational Inequalities[M].Amsterdam :North-Holland, 1981.
    [14] Chang S S,Xiang S W. On the existence of solutions for a class of quasi-bilinear variational inequalities[J].J Systems Sci Math Sci,1996,16(3):136-140.
    [15] DING Xie-ping.On the generalized mixed variational-like inequalities[J].J Sichuan Normal Univ,2003,22(5):494-503.
    [16] DING Xie-ping.Predictor-corrector iterative algorithms for solving generalized mixed quasi-variational-like inequalities[J].J Comput Appl Math, 2005,182(1):1-12. doi: 10.1016/j.cam.2004.11.036
    [17] Siddiqi A H, Ansari Q H.Strongly nonlinear quasi-variational inequalities[J].J Math Anal Appl, 1990,149(2):444-450. doi: 10.1016/0022-247X(90)90054-J
    [18] Noor M A. Splitting methods for pseudomonotone general mixed variational inequalities[J].J Global Optim,2000,18(1):75-89. doi: 10.1023/A:1008322118873
    [19] Tseng P. A modified forward-backward splitting method for maximal monotone mappings[J].SIAM J Control Optim,2000,38(2):431-466. doi: 10.1137/S0363012998338806
    [20] Xu H K. Iterative algorithms for nonlinear operators[J].J London Math Soc,2002,66(2):240-256. doi: 10.1112/S0024610702003332
    [21] HUANG Nan-jing,DENG Chuan-xian. Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities[J].J Math Anal Appl,2001,256(2):345-359. doi: 10.1006/jmaa.2000.6988
    [22] Glowinski R, Tallec P Le.Augmented Lagrange and Operator Splitting Methods in Nonlinear Mechanics[M].Philadelphia:SIAM,1989.
    [23] Huang N J, Liu Y P, Tang Y Y,et al.On the generalized set-valued strongly nonlinear implicit variational inequalities[J].Comput Math Appl,1998,37(10):1-7.
    [24] Yao J C. Abstract variational inequality problems and a basic theorem of complementarity[J].Comput Math Appl,1993,25(1):73-79.
  • 加载中
计量
  • 文章访问数:  3024
  • HTML全文浏览量:  168
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-12
  • 修回日期:  2007-04-18
  • 刊出日期:  2007-06-15

目录

    /

    返回文章
    返回