Green Quasifunction Method for Vibration of Simply-Supported Thin Polygonic Plates on Pasternak Foundation
-
摘要: 提出一种新的数值方法——准格林函数方法.以Pasternak地基上简支多边形薄板的振动问题为例,详细阐明了准格林函数方法的思想.即利用问题的基本解和边界方程构造一个准格林函数,这个函数满足了问题的齐次边界条件,采用格林公式将Pasternak地基上薄板自由振动问题的振型控制微分方程化为两个耦合的第二类Fredholm积分方程.边界方程有多种选择,在选定一种边界方程的基础上,可以通过建立一个新的边界方程来表示问题的边界,以克服积分核的奇异性,最后由积分方程的离散化方程组有非平凡解的条件,求得固有频率.数值方法表明,该方法具有较高的精度.
-
关键词:
- 格林函数 /
- 积分方程 /
- 薄板振动 /
- Pasternak地基
Abstract: A new numerical method-Green quasifunction method is proposed. The idea of Green quasifunction method was clarified in detail by considering vibration problem of simply-supported thin polygonic plates on Pasternak foundation. A Green quasifunction was established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the problem. The mode shape differential equation of vibration problem of simply-supported thin plates on Pasternak foundation was reduced to two simultaneous Fredholm integral equations of the second kind by Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equation, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations was overcome. Finally, natural frequency was obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the Green quasifunction method.-
Key words:
- Green function /
- integral equation /
- vibration of thin plate /
- Pasternak foundation
-
[1] Winkler E.Die Lehre von der Elastigitat und Festigkeit[M].Dominicus:Prague,1867. [2] Salvadurai A D S.Elastic Analysis of Soil Foundation Interaction[M].London:Elsevier Scientific Publishing Co,1979.[WT5”BZ]. Рвачев Β Л.Теория R-Функции и Некторые ее Приложения[M].Киев:Наук Думка,1982,415-421. [4] 袁鸿.Winkler地基上薄板问题的准格林函数方法[J].计算力学学报,1999,16(4):478-482. [5] 陆伟,袁鸿.准格林函数方法在Winkler地基上简支平行四边形板中的应用[J].暨南大学学报(自然科学与医学版),2006,27(1):81-86. [6] 王红,袁鸿.准格林函数方法在弹性扭转问题中的应用[J].华南理工大学学报(自然科学版),2004,32(11):86-88. [7] 王红,袁鸿.R-函数理论在梯形截面柱弹性扭转问题中的应用.华中科技大学学报(自然科学版),2005,33(11):99-101. [8] 郑建军,樊承谋.双参数地基板振动的中值定理[J].上海力学,1995,16(2):166-171. [9] Ortner V N.Regularisierte faltung von distributionen. Teil 2: Eine tabelle von fundamentallocunngen[J].Zeitschrift Fur Angewandte Mathematik und Physik,1980,31(1):155-173. doi: 10.1007/BF01601710 [10] Kurpa L V. Solution of the problem of deflection and vibration of plates by the R-function method[J].Sov Appl Mech,1984,20(5):470-473. doi: 10.1007/BF00885200
计量
- 文章访问数: 2869
- HTML全文浏览量: 166
- PDF下载量: 748
- 被引次数: 0