Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation
-
摘要: 通过求解与平面动力系统的两个平衡点相连接的抛物线解,获得了6种非线性行波方程的扭波解存在条件,并给出了这些扭波解的参数表达式,以及上述解存在的参数条件.Abstract: By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations was shown. Some exact explicit parametric representations of kink wave solutions were given. Explicit parameter conditions to guarantee the existence of kink wave solutions were determined.
-
[1] FAN En-gui.Uniformly constructing a series of explict exact solutions to nonlinear equations in mathematical physics[J].Chaos,Solitons and Fractals,2003,16:819-839. doi: 10.1016/S0960-0779(02)00472-1 [2] LI Ji-bin,CHEN Guang-rong.Bifurcations of travelling wave solutions for four classes of nonlinear wave equations[J].Internat J Bifucation and Chaos,2005,15(12):3973-3998. doi: 10.1142/S0218127405014416 [3] ZHANG Wei-guo,CHANG Qian-shun,JIANG Bao-guo.Explict exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers equations with nolinear terms of any order[J].Chaos Solitons and Fractals,2002,13:311-319. doi: 10.1016/S0960-0779(00)00272-1 [4] Parkes E J,Duffy B R.Travelling wave solutions to a compound KdV-Burgers equation[J].Phys Letter A,1997,229(4):217-220. doi: 10.1016/S0375-9601(97)00193-X [5] FENG Zhao-sheng.A note on “Explict exact solutions to the compound KdV equation”[J].Phys Letter A,2003,312:65-71. doi: 10.1016/S0375-9601(03)00617-0 [6] LI Biao,CHEN Yong,ZHANG Hong-qing.Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J].Appl Math Comput,2003,146(2):653-666. doi: 10.1016/S0096-3003(02)00610-0 [7] LI Biao,CHEN Yong,ZHANG Hong-qing.Explict exact solutions for some nolinear partial differential equations with nonlinear terms of any order[J].Czech J Phys,2003,53:283-295. doi: 10.1023/A:1023488209337 [8] LIU Chun-ping.Exact analytical solutions for nonlinear reaction-diffusion equations[J].Chaos Solitons and Fractals,2003,18:97-105. doi: 10.1016/S0960-0779(02)00590-8 [9] Wan X Y,Zhu Z S,Lu Y K.Solitary wave solutions of the generalized Burgers-Huxley equation[J].J Phys A:Math Gen,1990,23:271-274. doi: 10.1088/0305-4470/23/3/011 [10] Chow S N,Hale J K.Method of Bifurcation Theory[M].New York:Springer-Verlag,1981.
计量
- 文章访问数: 2593
- HTML全文浏览量: 126
- PDF下载量: 748
- 被引次数: 0