[1] |
ebyev P L. Sur les expressions approximatives des integrals par les auters prises entre les memes limites[J].Proc Math Soc Charkov,1882,2:93-98.
|
[2] |
Pecaric J E, Porchan F, Tong Y.Convex Functions, Partial Orderings and Statistical Applications[M]. San Diego: Academic Press, 1992.
|
[3] |
Dragomir S S , Rassias Th M.Ostrowski Type Inequalities and Applications in Numerical Integration[M].USA:Springer, 2002, 504.
|
[4] |
Heing H P, Maligranda L.ebyev inequality in function spaces[J].Real Analysis Exchange,1991/1992,17(1):211-247.
|
[5] |
Kwong M K, Zettl A.Norm Inequalities for Derivatives and Difference[M].New York/Berlin : Springer -Verlag,1980.
|
[6] |
Mitrinovic D S, Pecaric J E, Fink A M.Classical and New Inequalities in Analysis[M]. Dordrecht: Kluwer Academic Publishers, 1993.
|
[7] |
Pachpatte B G. On Trapezoid and Gruss like integral inequalities[J].Tamkang J Math,2003,34(4):365-369.
|
[8] |
Pachpatte B G. On Ostrowski-Grüss-ebyev type inequalities for functions whose modulus of derivatives are convex[J].J Inequal Pure Appl Math,2005,6(4):128.
|
[9] |
Pachpatte B G. On ebyev type inequalities involving functions whose derivatives belong to Lp spaces[J].J Inequal Pure Appl Math,2006,7(2): 58.
|
[10] |
Varosanec S. History, generalizations and applied unified treatments of two Ostrowski inequalities[J].J Inequal Pure Appl Math,2004,5(2):23.
|
[11] |
Dragomir S S. On simpson's quadrature formula for differentiable mappings whose derivatives belong to Lp spaces and applications[J].RGMIA Res Rep Coll,1998,1(2):89-96.
|
[12] |
Dragomir S S, Barnett N S. An ostrowski type inequality for mappings whose second derivatives are bounded and applications[J].RGMIA Res Rep Coll,1998,1(2):69-77.
|
[13] |
Dragomir S S, Wang S. A new inequality of Ostrowski's type in Lp norm[J].Indian J Math,1998,40(3):299-304.
|
[14] |
Mitrinovic D S,Pecaric J E, Fink A M.Inequalities Involving Functions and Their Integrals and Derivatives[M].Dordrecht: Kluwer Academic Publishers, 1991.
|