留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意精度的三点紧致显格式及其在CFD中的应用

林建国 谢志华 周俊陶

林建国, 谢志华, 周俊陶. 任意精度的三点紧致显格式及其在CFD中的应用[J]. 应用数学和力学, 2007, 28(7): 843-852.
引用本文: 林建国, 谢志华, 周俊陶. 任意精度的三点紧致显格式及其在CFD中的应用[J]. 应用数学和力学, 2007, 28(7): 843-852.
LIN Jian-guo, XIE Zhi-hua, ZHOU Jun-tao. Three-Point Explicit Compact Difference Scheme With Arbitrary Order of Accuracy and Its Applicatin in CFD[J]. Applied Mathematics and Mechanics, 2007, 28(7): 843-852.
Citation: LIN Jian-guo, XIE Zhi-hua, ZHOU Jun-tao. Three-Point Explicit Compact Difference Scheme With Arbitrary Order of Accuracy and Its Applicatin in CFD[J]. Applied Mathematics and Mechanics, 2007, 28(7): 843-852.

任意精度的三点紧致显格式及其在CFD中的应用

基金项目: 国家自然科学基金资助项目(50479053)
详细信息
    作者简介:

    林建国(1960- ),男,大连人,教授,博士生导师(联系人.Tel:+86-411-82931948;Fax:+86-411-84727632;E-mail:ljglin@126.com).

  • 中图分类号: O241.82;X145

Three-Point Explicit Compact Difference Scheme With Arbitrary Order of Accuracy and Its Applicatin in CFD

  • 摘要: 通过在泰勒级数展开中运用逐阶迭代的方法,推导出了空间任意精度的三点紧致显格式的表达式,又由Fourier分析法得到了格式的数值弥散和耗散特性.与以往的高精度紧致差分格式不同,提出的格式不用隐式求解代数方程组并且可以达到任意精度.通过方波问题和顶盖方腔流的算例表明,格式在稀疏网格下可以得到很高的精度,不仅能节省计算量,而且易于编程,有很高的计算效率.
  • [1] Carpenter M H, Gottlieb D, Abarbanel S. The stability of numerical boundary treatments for compact high-order finite-difference schemes[J].Journal of Computational Physics,1993,108(2):272-295. doi: 10.1006/jcph.1993.1182
    [2] Lele S K. Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42. doi: 10.1016/0021-9991(92)90324-R
    [3] Chu P C, FAN Chen-wu.A three-point combined compact difference scheme[J].Journal of Computational Physics,1998,140(2):370-399. doi: 10.1006/jcph.1998.5899
    [4] Mahesh K. A family of high order finite difference schemes with good spectral resolution[J].Journal of Computational Physics,1998,145(1):332-358. doi: 10.1006/jcph.1998.6022
    [5] Hixon R. Prefactored small-stencil compact schemes[J].Journal of Computational Physics,2000,165(2):522-541. doi: 10.1006/jcph.2000.6631
    [6] Tolstykh A I, Lipavskii M V.On performance of methods with third- and fifth-order compact upwind differencing[J].Journal of Computational Physics,1998,140(2):205-232. doi: 10.1006/jcph.1998.5887
    [7] MA Yan-wen, FU De-xun, Kobayashi N,et al.Numerical solution of the incompressible Navier-Stokes equations with an upwind compact difference scheme[J].International Journal for Numerical Methods in Fluids,1999,30(5):509-521. doi: 10.1002/(SICI)1097-0363(19990715)30:5<509::AID-FLD851>3.0.CO;2-E
    [8] MA Yan-wen, FU De-xun.Analysis of super compact finite difference method and application to simulation of vortex-shock interaction[J].International Journal for Numerical Methods in Fluids,2001,36(7):773-805. doi: 10.1002/fld.155
    [9] Boersma B J. A staggered compact finite difference formulation for the compressible Navier-Stokes equations[J].Journal of Computational Physics,2005,208(2):675-690. doi: 10.1016/j.jcp.2005.03.004
    [10] 袁湘江,周恒.计算激波的高精度数值方法[J].应用数学和力学,2000,21(5):441-450.
    [11] 刘儒勋,吴玲玲.非线性发展方程的小模板简化pade格式[J]. 应用数学和力学,2005,26(7):801-809.
    [12] Fomberg B, Ghrist M. Spatial finite difference approximations for wave-type equation[J].SIAM Journal on Numerical Analysis,1999,37(1):105-130. doi: 10.1137/S0036142998335881
    [13] 林建国,邱大洪.二阶非线性与色散性的Boussinesq类方程[J]. 中国科学,E辑,1998,28(6):567-573.
    [14] Spotz W F. High order compact finite difference schemes for computational mechanics[D].Austin:University of Texas, 1995.
    [15] Kalita J C, Dalal D C, Dass A K.A class of higher order compact schemes for the unsteady two-dimensional convection diffusion equation with variable convection coefficients[J].International Journal for Numerical Methods in Fluids,2002,38(12):1111-1131. doi: 10.1002/fld.263
    [16] Ghia U, Ghia K N,Shin C T.High-Re solutions for imcompressible flow using the Navier-Stokes equation and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411. doi: 10.1016/0021-9991(82)90058-4
  • 加载中
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  127
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-15
  • 修回日期:  2007-04-26
  • 刊出日期:  2007-07-15

目录

    /

    返回文章
    返回