留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抛物化稳定性方程在可压缩边界层中应用的检验

张永明 周恒

张永明, 周恒. 抛物化稳定性方程在可压缩边界层中应用的检验[J]. 应用数学和力学, 2007, 28(8): 883-893.
引用本文: 张永明, 周恒. 抛物化稳定性方程在可压缩边界层中应用的检验[J]. 应用数学和力学, 2007, 28(8): 883-893.
ZHANG Yong-ming, ZHOU Heng. Verification of the Parabolized Stability Equationsfor Its Application to Compressible Boundary Layers[J]. Applied Mathematics and Mechanics, 2007, 28(8): 883-893.
Citation: ZHANG Yong-ming, ZHOU Heng. Verification of the Parabolized Stability Equationsfor Its Application to Compressible Boundary Layers[J]. Applied Mathematics and Mechanics, 2007, 28(8): 883-893.

抛物化稳定性方程在可压缩边界层中应用的检验

基金项目: 国家自然科学基金(重点)资助项目(10632050);南开大学天津大学刘徽应用数学中心资助项目
详细信息
    作者简介:

    张永明(1979- ),男,云南人,博士生(Tel:+86-22-27403374;E-mail:yingmzh@yahoo.com);周恒(联系人.Tel:+86-22-27890533;Fax:+86-22-27407025;E-mail:hzhou1@tju.edu.cn).

  • 中图分类号: O357.41

Verification of the Parabolized Stability Equationsfor Its Application to Compressible Boundary Layers

  • 摘要: 用抛物化稳定性方程(PSE),研究了可压缩边界层中扰动的演化,并与由直接数值模拟(DNS)所得进行比较.目的在检验PSE方法用于研究可压缩边界层中扰动演化的可靠性.结果显示,无论是亚音速还是超音速边界层,由PSE方法和由DNS方法所得结果都基本一致,而温度比速度吻合得更好.对超音速边界层,还计算了小扰动的中性曲线.与线性稳定性理论(LST)的结果相比,二者的关系和不可压边界层的情况相似.
  • [1] Gaster M. On the effects of boundary-layer growth on flow stability[J].Journal of Fluid Mechanics,1974,66(3):465-480. doi: 10.1017/S0022112074000310
    [2] 于秀阳,周恒.平板边界层流的非平行性对流动稳定性的影响[J].力学学报,1986,18(4):297-306.
    [3] Herbert Th, Bertolotti F P.Stability analysis of nonparallel boundary layers[J].Bull Am Phys Soc,1987,32(11):2079-2086.
    [4] Bertolotti F P, Herbert Th,Spalart P R. Linear and nonlinear stability of the Blasius boundary layer[J].Journal of Fluid Mechanics,1992,242(1):441-474. doi: 10.1017/S0022112092002453
    [5] Schubauer G B, Skramstad H K.Laminar boundary-layer oscillations and transition on a flat plate[J].J Res Natl Bur Stand,1947,38(1):251-292. doi: 10.6028/jres.038.013
    [6] Ross J A, Barnes F H,Burns J G,et al.The flat plate boundary layer part-3—comparison of theory with experiment[J].Journal of Fluid Mechanics,1970,43(4):819-832. doi: 10.1017/S002211207000277X
    [7] Strazisar A J, Reshotko E,Prahl J M.Experimental study of the stability of heated laminar boundary layers in water[J].Journal of Fluid Mechanics,1977,83(2):225-247. doi: 10.1017/S0022112077001177
    [8] Kachanov Yu S, Kozlov V V,Levchenko V Ya. Nonlinear development of a wave in a boundary layer[J].Fluid Dynamics,1977,12(3):383-390.
    [9] Esfahanian V, Hejranfar K,Sabetghadam F. Linear and nonlinear PSE for stability analysis of the Blasius boundary layer using compact scheme[J].Journal of Fluids Engineering,2001,123(3):545-550. doi: 10.1115/1.1385833
    [10] Mujeeb R, Malik M R,Choudhari M M,et al.Secondary instability of crossflow vortices and swept-wing boundary-layer transition[J].Journal of Fluid Mechanics,1999,399(1):85-115. doi: 10.1017/S0022112099006291
    [11] Herbert Th. Parabolized stability equations[J].Annual Review of Fluid Mechanics,1997,29(1):245-283. doi: 10.1146/annurev.fluid.29.1.245
    [12] Bertolotti F P,Herbert Th.Analysis of the linear stability of compressible boundary layers using the PSE[J].Theoretical and Computational Fluid Dynamics,1991,3(2):117-124. doi: 10.1007/BF00271620
    [13] Bertolotti F P.Compressible boundary layer stability analyzed with the PSE equations[R]. AIAA Paper,1991,1637.
    [14] Hu S H, Zhong X. Nonparallel stability analysis of compressible boundary layer using 3-D PSE[R]. AIAA Paper, 1999, 0813.
    [15] Chang C L, Malik M R,Erlebacher G,et al.Compressible stability of growing boundary layers using parabolized stability equations[R]. AIAA Paper, 1991, 1636.
    [16] Li F,Malik M R.On the nature of PSE approximation[J].Theoretical and Computational Fluid Dynamics,1996,8(4):253-273.
    [17] Haj-Hariri H.Characteristics analysis of the parabolized stability equations[J].Studies in Applied Mathematics,1994,92(1):41-53.
  • 加载中
计量
  • 文章访问数:  3073
  • HTML全文浏览量:  165
  • PDF下载量:  887
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-10
  • 修回日期:  2007-06-21
  • 刊出日期:  2007-08-15

目录

    /

    返回文章
    返回