Bifurcations of Travelling Wave Solutions for Jaulent-Miodek Equations
-
摘要: 利用平面动力系统分支理论研究了耦合的Jaulent-Miodek方程的孤立波及周期波的存在性,求出了分支参数集.在给定的参数条件下,得到了该方程光滑孤立波解及周期行波解的所有可能的显式表达式.Abstract: By using the theory of bifurcations of planar dynamical systems to the coupled Jaulent-Miodek equations,the existence of smooth solitary travelling wave solutions and uncountably infinite many smooth periodic travelling wave solutions is studied and the bifurcation parametric sets are shown.Under the given parametric conditions,all possible representations of explicit exact solitary wave solutions and periodic wave solutions are obtained.
-
Key words:
- J-M equations /
- solitary wave /
- periodic travelling wave solution
-
[1] Jaulent M, Miodek I.Nonlinear evolution equations associated with energy dependent Schrdinger potentials[J].Lett Math Phys,1976,1(3):243-250. doi: 10.1007/BF00417611 [2] FAN En-gui. Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics[J].Chaos, Solitons and Fractals,2003,16(5):819-839. doi: 10.1016/S0960-0779(02)00472-1 [3] Chow S N, Hale J K.Method of Bifurcation Theory[M].New York: Springer-Verlag,1981. [4] Guckenheimer J, Holmes P J.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York: Springer-Verlag,1983. [5] LI Ji-bin. Solitary and periodic travelling wave solutions in Klein-Gordon-Schrdinger equation[J].Journal of Yunnan University,2003,25(3):176-180.
计量
- 文章访问数: 2929
- HTML全文浏览量: 129
- PDF下载量: 760
- 被引次数: 0