Continuous Finite Element Methods of Hamilton Systems
-
摘要: 利用常微分方程的连续有限元法,对非线性Hamilton系统证明了连续一次、二次有限元法分别是2阶和3阶的拟辛格式,且保持能量守恒;连续有限元法是辛算法对线性Hamilton系统,且保持能量守恒.在数值计算上探讨了辛性质和能量守恒性,与已有的辛算法进行对比,结果与理论相吻合.
-
关键词:
- Hamilton方程 /
- 连续有限元方法 /
- 拟辛算法 /
- 能量守恒
Abstract: By applying the continuous finite element methods of ordinary differential equations,the linear element methods are proved have pseudo-symplectic scheme of order 2 and the quadratic element methods have pseudo-symplectic scheme of order 3 respectively for general Hamiltonian systems,as well as energy conservative.The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems.The numerical results are in agreement with theory. -
[1] 冯康. 冯康文集[M].北京:国防工业出版社,1995,1-185. [2] 冯康,秦孟兆. 哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003,1-386. [3] Sanz-Serna J M.Runge-Kutta schemes for Hamiltonian systems[J].BIT,1988,28:877-883. doi: 10.1007/BF01954907 [4] Aubry A, Chartier P.Pseudo-symplectic Runge-Kutta methods[J].BIT,1997,37:1-21. doi: 10.1007/BF02510168 [5] Gonzalez O, Simo J C.On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry[J].Computer Methods in Applied Mechanics and Engineering,1996,134:197-222. doi: 10.1016/0045-7825(96)01009-2 [6] Kane C, Marsde J E, Ortiz M. Symplectic-energy-momentum preserving variational integrators[J].J Math Phys,1999,40:3353-3371. doi: 10.1063/1.532892 [7] Bridges T J, Reich S.Multisymplectic intergrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Physics Letters A,2001,284:184-193. doi: 10.1016/S0375-9601(01)00294-8 [8] 陈传淼,黄云清.有限元高精度理论[M].长沙:湖南科技出版社,1995,197-227. [9] 陈传淼.有限元超收敛构造理论[M].长沙:湖南科技出版社,2001,19-225. [10] 杨禄源,汤琼.常微方程初值问题连续有限元的超收敛性[J].高等学校计算数学学报,2004,26(1):91-96. [11] 李延欣,丁培柱,吴承埙,等.A2B模型分子经典轨迹的辛算法计算[J].高等学校化学学报,1995,15(8):1181-1186. [12] 季江微,廖新浩,刘林.辛差分格式的守恒量及其稳定性[J].计算物理,1997,14(1):68-74.
计量
- 文章访问数: 2903
- HTML全文浏览量: 93
- PDF下载量: 735
- 被引次数: 0