留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的无奇异局部边界积分方程方法

付东杰 陈海波 张培强

付东杰, 陈海波, 张培强. 改进的无奇异局部边界积分方程方法[J]. 应用数学和力学, 2007, 28(8): 976-982.
引用本文: 付东杰, 陈海波, 张培强. 改进的无奇异局部边界积分方程方法[J]. 应用数学和力学, 2007, 28(8): 976-982.
FU Dong-jie, CHEN Hai-bo, ZHANG Pei-qiang. Improved Non-Singular Local Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2007, 28(8): 976-982.
Citation: FU Dong-jie, CHEN Hai-bo, ZHANG Pei-qiang. Improved Non-Singular Local Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2007, 28(8): 976-982.

改进的无奇异局部边界积分方程方法

详细信息
    作者简介:

    付东杰(1977- ),河北人,博士生(E-mail:djfu@mail.uste.edu.cn);陈海波(1968- ),教授,博士生导师(联系人.Tel:+86-551-3603724;Fax:+86-551-3606459;E-mail:hbchen@ustc.edu.cn).

  • 中图分类号: O302

Improved Non-Singular Local Boundary Integral Equation Method

  • 摘要: 在局部边界积分方程方法中,当源节点位于分析域的整体边界上时,局部边界积分将出现奇异积分问题,这些奇异积分需要做特别的处理.为此,提出了对域内节点采用局部积分方程,而对边界节点直接采用移动最小二乘近似函数引入边界条件来解决奇异积分问题,这同时也解决了对积分边界进行插值引入近似误差的问题.作为应用和数值实验,对Laplace方程和Helmholtz方程问题进行了分析,取得了很好的数值结果.进而,在Helmholtz方程求解中,采用了含波解信息的修正基函数来代替单项式基函数进行近似.数值结果显示,这样处理是简单高效的,在高波数声传播问题的求解中非常具有前景.
  • [1] Fries Thomas-Peter,Matthies Hermann G.Classication and overview of mesh- free methods[R]. Institute of Scientic Computing, Technical University Braunschweig Brunswick,Germany, 2003.
    [2] 张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [3] Zhu T,Zhang J D, Atluri S N.A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach[J].Computational Mechanics,1998,21(3):223-235. doi: 10.1007/s004660050297
    [4] Sladek J,Sladek V, Atluri S N.Application of the local boundary integral equation method to boundary-value problems[J].International Applied Mechanics,2002,38(9):1025-1047. doi: 10.1023/A:1021785329593
    [5] 龙述尧,熊渊博. 关于薄板的无网格局部边界积分方程方法中的友解[J].应用数学和力学,2004,25(4):379-384.
    [6] LONG Shu-yao, ZHANG Qin.Analysis of thin plates by the local boundary integral equation (LBIE) method[J].Engineering Analysis With Boundary Elements,2002,26(8):707-718. doi: 10.1016/S0955-7997(02)00025-5
    [7] Sladek J, Sladek V, Atluri S N.Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties[J].Computational Mechanics,2000,24(6):456-462. doi: 10.1007/s004660050005
    [8] Zhu T, Zhang J, Atluri S N.A meshless local boundary integral equation (LBIE) method for solving nonlinear problems[J].Computational Mechanics,1998,22(2):174-186. doi: 10.1007/s004660050351
    [9] Chen H B, Lu P, Huang M G,et al.An effective method for finding values on and near boundaries in the elastic BEM[J].Computers and Structures,1998,69(4):421-431. doi: 10.1016/S0045-7949(98)00122-9
    [10] Chen H B,Lu P,Schnack E.Regularized algorithms for the calculation on and near boundary in 2D elastic BEM[J].Engineering Analysis with Boundary Elements,2001,25(10):851-876. doi: 10.1016/S0955-7997(01)00069-8
    [11] Sladek V, Sladek J,Atluri S N,et al.Numerical integration of singularities in meshless implementation of local boundary integral equations[J].Computational Mechanics,2000,25(4):394-403. doi: 10.1007/s004660050486
    [12] 郭晓峰,陈海波,王宁宇,等. 二维位势问题中正则局部边界积分方法[J].中国科学技术大学学报,2006,36(6):636-640.
    [13] Chen H B, Fu D J,Zhang P Q.An investigation of Helmholtz problems with high wave numbers via the meshless LBIEM[A].In:S.M. Sivakumar, A. Meher Prasad, B. Dattaguru,et al Eds.Advances in Computational & Experimental Engineering and Sciences (Proceeding of ICCES'05, 1-10 December 2005, India),Tech Science Press, 2005, 114-119.
  • 加载中
计量
  • 文章访问数:  2886
  • HTML全文浏览量:  123
  • PDF下载量:  659
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-12-06
  • 修回日期:  2007-03-06
  • 刊出日期:  2007-08-15

目录

    /

    返回文章
    返回