Reduced Projection Augmented Lagrange Bi-Conjugate Gradient Method for Contact and Impact Problems
-
摘要: 根据冲击接触计算模型所需满足的基本控制方程和非线性互补条件,应用非线性互补问题与约束优化的等价关系将非线性互补接触问题转变成一个非线性规划问题,系统地推导建立了冲击接触问题的一种双共轭投影梯度计算方法.增广Lagrange乘子法克服了罚函数要求减小迭代步长以达到计算稳定的限制,即使对于冲击接触问题亦可以采用较大迭代步长,在形成的与原互补问题等价的无约束规划模式下,应用双共轭投影梯度算法提高非线性搜索速度和计算效率.算法模型计算结果表明,所建立的双共轭投影梯度计算理论及方法是正确有效的.
-
关键词:
- 冲击接触问题 /
- Lagrange乘子法 /
- 双共轭投影梯度 /
- 数值算法
Abstract: Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems,a reduced projection augmented Lagrange bi-conjugate gradient method was proposed for contact and impact problems by translating non-linear complementary conditions into-equivalent formulation of non-linear programming.For contact-impact problems,a larger time-step can be adopted arriving at numerical convergence compared with penalty method.By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions,a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to improve precision and efficiency of numerical solutions.A numerical example shows that the algorithm suggested is valid and exact. -
[1] ZHONG Zhi-hua.Finite Element Procedures for Contact-Impact Problems[M].Oxford: Oxford University Press, 1993. [2] Kikuchi N,Oden J T.Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[M].Philadelphia:SIAM,1988. [3] Babuska I. The finite element method with penalty[J].Math Comp,1973,27(122):221-228. [4] Irons B M, Draper K J.Lagrange multiplier techniques in structural analysis[J].AIAA J,1965,3(6)1172-1174. [5] SHA De-song, Tamma K K,LI Mao-cheng. Robust explicit computational developments and solution strategies for impact problems involving friction[J].Internat J Numer Methods Engrg,1996,39(5):721-739. doi: 10.1002/(SICI)1097-0207(19960315)39:5<721::AID-NME865>3.0.CO;2-J [6] 李南生,沙德松, 孙焕纯,等. 冲击接触问题增广Lagranian双共轭梯度法[J].固体力学学报,1999,20(1):46-61. [7] 李南生,许强,李尧臣,等.粘塑性介质率本构方程的广义序列积分解法[J].同济大学学报,2002,30(9):1073-1077. [8] Simo J C, Govindjee S.Non-linear B-stability and symmetry preserving return mapping algorithms for plasticity and viscoplasticity[J].Internat J Numer Methods Engrg,1991,31(1):151-176. doi: 10.1002/nme.1620310109 [9] 韩继业, 修乃华, 戚厚铎.非线性互补理论与算法[M].上海:上海科学技术出版社,2006. [10] 赵凤治,尉继英.约束最优化计算方法[M].北京:科学出版社,1991. [11] 李南生,沙德松,周晶.一类基于点-面模式的低阶单元接触搜索方法[J].力学季刊,2000,21(1):139-143.
计量
- 文章访问数: 2883
- HTML全文浏览量: 128
- PDF下载量: 769
- 被引次数: 0