留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类双面碰撞振子的对称性尖点分岔与混沌

乐源 谢建华

乐源, 谢建华. 一类双面碰撞振子的对称性尖点分岔与混沌[J]. 应用数学和力学, 2007, 28(8): 991-998.
引用本文: 乐源, 谢建华. 一类双面碰撞振子的对称性尖点分岔与混沌[J]. 应用数学和力学, 2007, 28(8): 991-998.
YUE Yuan, XIE Jian-hua. Symmetry, Cusp Bifurcation and Chaos of an Impact Oscillator Between Two Rigid Sides[J]. Applied Mathematics and Mechanics, 2007, 28(8): 991-998.
Citation: YUE Yuan, XIE Jian-hua. Symmetry, Cusp Bifurcation and Chaos of an Impact Oscillator Between Two Rigid Sides[J]. Applied Mathematics and Mechanics, 2007, 28(8): 991-998.

一类双面碰撞振子的对称性尖点分岔与混沌

基金项目: 国家自然科学基金资助项目(10472096)
详细信息
    作者简介:

    乐源(1974- ),男,四川达州人,博士生(Tel:+86-28-87634460;E-mail:peak8668@yahoo.com.cn);谢建华(1957- ),男,浙江绍兴人,教授,博士生导师(Tel:+86-28-87634029;E-mail:jhxie2000@126.com).

  • 中图分类号: O313.4

Symmetry, Cusp Bifurcation and Chaos of an Impact Oscillator Between Two Rigid Sides

  • 摘要: 讨论了一类单自由度双面碰撞振子的对称型周期n-2运动以及非对称型周期n-2运动.把映射不动点的分岔理论运用到该模型,并通过分析对称系统的Poincaré映射的对称性,证明了对称型周期运动只能发生音叉分岔.数值模拟表明:对称系统的对称型周期n-2运动,首先由一条对称周期轨道通过音叉分岔形成具有相同稳定性的两条反对称的周期轨道;随着参数的持续变化,两条反对称的周期轨道经历两个同步的周期倍化序列各自生成一个反对称的混沌吸引子.如果对称系统演变为非对称系统,非对称型周期n-2运动的分岔过程可用一个两参数开折的尖点分岔描述,音叉分岔将会演变为一支没有分岔的分支以及另外一个鞍结分岔的分支.
  • [1] Luo A C J. On the symmetry of solutions in non-smooth dynamical systems with two constraints[J].Journal of Sound and Vibration,2004,273:1118-1126. doi: 10.1016/j.jsv.2003.09.011
    [2] Han R P S, Luo A C J,Deng W.Chaotic motion of a horizontal impact pair[J].Journal of Sound and Vibration,1995,181(2):231-250. doi: 10.1006/jsvi.1995.0137
    [3] de Souza S L T, Caldas I L. Controlling chaotic orbits in mechanical systems with impacts[J].Chaos, Solitons & Fractals,2004,19:171-178.
    [4] Luo A C J. Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator[J].Chaos, Solitons & Fractals,2004,19:823-839.
    [5] Luo G W. Period-doubling bifurcations and routes to chaos of the vibratory systems contacting stops[J].Physics Letters A,2004,323:210-217. doi: 10.1016/j.physleta.2004.01.071
    [6] 李群宏,陆启韶.一类双自由度碰振系统运动分析[J].力学学报,2001,33(6):776-786.
    [7] Han W, Jin D P, Hu H Y.Dynamics of an oblique-impact vibrating system of two degrees of freedom[J].Journal of Sound and Vibration,2004,275:795-822. doi: 10.1016/S0022-460X(03)00743-0
    [8] Luo A C J, CHEN Li-di.Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts[J].Chaos, Solitons & Fractals,2005,24:567-578.
    [9] Ding W C, Xie J H, Sun Q G.Interaction of Hopf and period doubling bifurcations of a vibro-impact system[J].Journal of Sound and Vibration,2004,275(5):27-45. doi: 10.1016/S0022-460X(03)00740-5
    [10] Wen G L. Codimension-2 Hopf bifurcation of a two-degree-of-freedom vibro-impact system[J].Journal of Sound and Vibration,2001,242(3):475-485. doi: 10.1006/jsvi.2000.3359
    [11] Xie J H, Ding W C.Hopf-Hopf bifurcation and invariant torus T2 of a vibro-impact system[J].International Journal of Non-Linear Mechanics,2005,40:531-543. doi: 10.1016/j.ijnonlinmec.2004.07.015
    [12] Ding W C, Xie J H. Torus T2 and its routes to chaos of a vibro-impact system[J].Physics Letters A,2006,349:324-330. doi: 10.1016/j.physleta.2005.09.038
    [13] Budd C, Dux F.The effect of frequency and clearance vibrations on single-degree-of-freedom impact oscillators[J].Journal of Sound and Vibration,1995,184(3):475-502. doi: 10.1006/jsvi.1995.0329
  • 加载中
计量
  • 文章访问数:  3346
  • HTML全文浏览量:  171
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-16
  • 修回日期:  2007-04-04
  • 刊出日期:  2007-08-15

目录

    /

    返回文章
    返回