Solution and Its Application of Transient Stream/Groundwater Model Subjected to Time-Dependent Vertical Seepage
-
摘要: 在河渠边界控制下的半无限含水层中,对时变垂向入渗影响下的潜水非稳定渗流模型,利用Boussinesq第一线性化方法,通过Laplace变换并结合卷积原理,导出模型的解析解.根据不同水文地质条件下解的数学特征,建立相应的含水层参数求解方法;在此基础上,建立计算河渠与含水层之间水量交换的公式,以及计算潜水蒸发强度的递推公式.以安徽淮北平原某河流-潜水含水层系统为例,阐述上述方法的计算过程与步骤.Abstract: Based on the first linearized Boussinesq equation, analytical solution of the transient groundwater model, which is used for describing phreatic flow in a semi-infinite aquifer bounded by a linear stream and subjected to time-dependent vertical seepage, is derived out by Laplace transform and the convolution integral. According to the mathematical characteristics of the solution, different methods for estimating aquifer parameters are constructed to satisfy different hydrological conditions. Then, the equation for estimating water exchange between stream and aquifer is proposed. And a recursion equation or estimating the intensity of phreatic evaporation is proposed too. A phreatic aquifer stream system located in Huaibei Plain, Anhui Province, China, is taken as an example to demonstrate the estimation process of the methods stated above.
-
[1] 张蔚榛. 地下水非稳定流计算和地下水资源评价[M].北京:科学出版社,1983. [2] 毛昶熙. 渗流计算分析与控制[M].北京:中国水利水电出版社,1988. [3] Sergio E S. Modeling groundwater flow under transient nonlinear free surface[J].Journal of Hydrologic Engineering,2003,8(3):123-132. doi: 10.1061/(ASCE)1084-0699(2003)8:3(123) [4] Srivastava R. Aquifer response to linearly varying stream stage[J].Journal of Hydrologic Engineering,2003,8(6):361-364. doi: 10.1061/(ASCE)1084-0699(2003)8:6(361) [5] Edenhofer J, Schmitz G H.Pressure distribution in a semi-infinite horizontal aquifer with steep gradients due to steady recharge and/or drainage:the exact explicit solution[J].Transport in Porous Media,2001,45(3):345-364. doi: 10.1023/A:1012061618468 [6] Mishra A, Hata T, Abdelhadi A W. Models for recession flows in the upper blue Nile river[J].Hydrological Processes,2004,18(15): 2773-2786. doi: 10.1002/hyp.1322 [7] Szilagyi J, Parlange M B, Albertson J D. Recession flow analysis for aquifer parameter determination[J].Water Resources Research,1998,34(7):1851-1857. doi: 10.1029/98WR01009 [8] Basha H A, Maalouf S F. Theoretical and conceptual models of subsurface hillslope flows[J].Water Resources Research,2005,41(7):1-7, doi: 10.1029/2004WR003769. [9] Troch P A, Van Loon A H,Hilberts A G J, Analytical solution of the linearized hillslope-storage Boussinesq equation for exponential hillslope width functions[J].Water Resources Research,2004,40(8):1-6, doi:10.1029/2003 WR002850 [10] Woo S B, Philip L F L.Water table profiles and discharges for an inclined ditch-drained aquifer under temporally variable recharge[J].Journal of Irrigation and Drainage Engineering,2003,129(2):93-99 doi: 10.1061/(ASCE)0733-9437(2003)129:2(93) [11] 陶月赞,席道瑛. 垂直与水平渗透作用下潜水非稳定渗流运动规律[J].应用数学和力学,2006,27(1):53-59.
计量
- 文章访问数: 2611
- HTML全文浏览量: 132
- PDF下载量: 776
- 被引次数: 0