留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和地基上弹性基础的竖向振动特性研究

王国才 王哲 孟凡丽

王国才, 王哲, 孟凡丽. 饱和地基上弹性基础的竖向振动特性研究[J]. 应用数学和力学, 2007, 28(9): 1071-1078.
引用本文: 王国才, 王哲, 孟凡丽. 饱和地基上弹性基础的竖向振动特性研究[J]. 应用数学和力学, 2007, 28(9): 1071-1078.
WANG Guo-cai, WANG Zhe, MENG Fan-li. Vertical Vibrations of Elastic Foundation Resting on Saturated Half-Space[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1071-1078.
Citation: WANG Guo-cai, WANG Zhe, MENG Fan-li. Vertical Vibrations of Elastic Foundation Resting on Saturated Half-Space[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1071-1078.

饱和地基上弹性基础的竖向振动特性研究

基金项目: 浙江省自然科学基金资助项目(Y105480);浙江省教育厅基金资助项目(20051414)
详细信息
    作者简介:

    王国才(1971- ),男,安徽天长人,副教授(联系人.Tel:+86-571-88320460;Fax:+86-571-88320124;E-mail:wanggczjut@hotmail.com).

  • 中图分类号: TU476

Vertical Vibrations of Elastic Foundation Resting on Saturated Half-Space

  • 摘要: 采用解析的方法研究了饱和地基上受一简谐竖向荷载作用下弹性基础的动力响应.在分析中,首先利用积分变换技术获得了饱和介质基本控制方程的变换解,然后基于基础-半空间完全放松接触、半空间表面完全透水或不透水的假设,建立了该动力混合边值问题的对偶积分方程,并把该对偶积分方程进一步化为易于数值求解的第二类Fredholm积分方程A·D2文末数值算例给出了动力柔度系数、位移和孔隙水压力随振动频域和土-基础体系物理力学参数特性的变化曲线.结果表明:饱和地基上弹性基础的动力响应完全不同于饱和地基上刚性圆板的动力响应.所用方法可用于研究波的传播、土-结构动力相互作用等许多问题.
  • [1] Lamb H.On the propagation of tremors over the surface of an elastic solid [J].Philos T Roy Soc A,Ser A,1904,203:1-42. doi: 10.1098/rsta.1904.0013
    [2] Meek J W, Wolf J P.Approximate Green's function for surface foundations[J].J Geotech Eng,1993,119(10):1499-1514. doi: 10.1061/(ASCE)0733-9410(1993)119:10(1499)
    [3] Vrettos C. Vertical and rocking impedances for rigid rectangular foundations on soils with bounded non-homogeneity[J].Earthq Eng Struct D,1999,28(12):1525-1540. doi: 10.1002/(SICI)1096-9845(199912)28:12<1525::AID-EQE879>3.0.CO;2-S
    [4] Genes M C, Kocak S.Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/ boundary element/ scaled boundary finite element model[J].Int J Numer Meth Engng,2005,62(6):798-823. doi: 10.1002/nme.1212
    [5] Barros P L A. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils[J].Int J Numer Anal Methods Geomech,2006,30(7):683-702. doi: 10.1002/nag.496
    [6] Biot M A. The theory of propagation of elastic waves in a fluid-saturated porous solid[J].J Acoust Soc Am,1956,28(2):168-191. doi: 10.1121/1.1908239
    [7] Kassir M K, Xu J,Bandyopadyay K. Rotatory and horizontal vibrations of a circular surface footing on a saturated elastic half-space[J].Int J Solids Struct,1996,33(12):265-281. doi: 10.1016/0020-7683(95)00030-E
    [8] Bo J, Hua L. Vertical dynamic response of a disk on a saturated poroelastic half-space[J].Soil Dyn Earthq Eng,1999,18(6):437-443. doi: 10.1016/S0267-7261(99)00013-5
    [9] Chen L, Wang G.Torional vibrations of elastic foundation on saturated media[J].Soil Dyn Earthq Eng,2002,22(3):223-227. doi: 10.1016/S0267-7261(02)00012-X
    [10] Senjuntichai T, Sapsathiarn Y. Forced vertical vibration of circular plate in multilayered poroelastic medium[J].J Eng Mech-ASCE,2003,129(11):1130-1141. doi: 10.1061/(ASCE)0733-9399(2003)129:10(1130)
    [11] Wang G, Chen L,Song C.Finite-infinite element for dynamic analysis of axisymmetrically saturated composite foundations[J].Int J Numer Meth Engng,2006,67(7):916-932. doi: 10.1002/nme.1654
    [12] Biot M A. Mechanics of deformation and acoustic propagation in porous media[J].J Appl Phys,1962,33(4):1482-1498. doi: 10.1063/1.1728759
    [13] Bishop R E D, Johnson D C.The Mechanics of Vibration[M].Cambridge:Cambridge University Press,1979.
    [14] Erdelyi A,Sneddon I N. Fractional integration and dual integral Equations [J].Can J Math,1962,14(4):686-693.
    [15] Noble B. The solution of Bessel function dual integral equation by a multiplying-factor method[J].Proc Camb Phil Soc A,1963,59(2):351-362. doi: 10.1017/S0305004100036987
  • 加载中
计量
  • 文章访问数:  2807
  • HTML全文浏览量:  181
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-13
  • 修回日期:  2007-07-09
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回