留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有多个非线性源项的波动方程

刘亚成 徐润章 于涛

刘亚成, 徐润章, 于涛. 具有多个非线性源项的波动方程[J]. 应用数学和力学, 2007, 28(9): 1079-1086.
引用本文: 刘亚成, 徐润章, 于涛. 具有多个非线性源项的波动方程[J]. 应用数学和力学, 2007, 28(9): 1079-1086.
LIU Ya-cheng, XU Run-zhang, YU Tao. Wave Equations With Several Nonlinear Source Terms[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1079-1086.
Citation: LIU Ya-cheng, XU Run-zhang, YU Tao. Wave Equations With Several Nonlinear Source Terms[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1079-1086.

具有多个非线性源项的波动方程

基金项目: 国家自然科学基金资助项目(10271034)
详细信息
    作者简介:

    刘亚成(1941- ),男,吉林人,教授(Tel:+86-451-82518277);徐润章(1982- ),男,河北人,博士(联系人.E-mail:xurunzh@yahoo.com.cn).

  • 中图分类号: O175.26;O175.27

Wave Equations With Several Nonlinear Source Terms

  • 摘要: 利用位势井方法研究在有界区域上具有多个非线性源项的波动方程初边值问题.给出了位势井的结构和位势井深度函数的性质.通过引进位势井族得到了在这些问题的流之下的一些集合不变性以及解的真空隔离,揭示了只要问题的初值属于位势井内或位势井外,则问题在今后所有时间内的解都存在于位势井内或井外,同时存在一个没有解的空间区域.进而给出了解的整体存在和不存在的门槛结果.最后,利用相同的方法讨论了具有临界初始条件的问题.
  • [1] Sattinger D H.On global solution of nonlinear hyperbolic equations[J].Archive for Rational Mechanics and Analysis,1968,30:148-172.
    [2] Payne L E,Sattinger D H.Sadle points and instability of nonlinear hyperbolic equations[J]. Israel Journal of Mathematics,1975,22:273-303. doi: 10.1007/BF02761595
    [3] Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J].Math Japan,1972,17:173-193.
    [4] LIU Ya-cheng. On potential wells and vacuum isolating of solutions for semilinear wave equations[J].Journal of Differential Equations,2003,192(1):155-169. doi: 10.1016/S0022-0396(02)00020-7
    [5] LIU Ya-cheng,ZHAO Jun-sheng.Multidimensional viscoelasticity equations with nonlinear damping and source terms[J].Nonlinear Analysis,2004,56(6):851-865. doi: 10.1016/j.na.2003.07.021
    [6] LIU Ya-cheng,ZHAO Jun-sheng.Nonlinear parabolic equations with critical initial conditions J(u0)=d or I (u0)=0[J].Nonlinear Analysis,2004,58(7/8):873-883. doi: 10.1016/j.na.2004.05.019
    [7] Tsutsumi M. Existence and nonexistence of global solutions for nonlinear parabolic equations[J].Publications of the Research Institute for Mathematical Sciences,1972/1973,8:211-229.
    [8] Lions J L.Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires[M].Paris:Dunod Gauthier-Villars,1969.
    [9] Ikehata R.Some remarks on the wave equations with nonlinear damping and source terms[J].Nonlinear Analysis,1996,27(10):1165-1175. doi: 10.1016/0362-546X(95)00119-G
    [10] Nakao N,Ono K.Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[J].Mathematische Zeitschrift,1993,214(2):325-342. doi: 10.1007/BF02572407
    [11] Marcelo M,Cavalcanti,Valéria N.Domingos Cavalcanti,Existence and asymptotic stability for evolution problems on manifolds with damping and source terms[J].Journal of Mathematical Analysis and Applications,2004,291(1):109-127. doi: 10.1016/j.jmaa.2003.10.020
    [12] Marcelo M, Cavalcanti, Valéria N, Domingos Cavalcanti, Patrick Martinez.Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term[J].Journal of Differential Equations,2004,203(1):119-158. doi: 10.1016/j.jde.2004.04.011
    [13] Zhang J. On the standing wave in coupled non-linear Klein-Gordon equations[J].Mathematical Methods in the Applied Sciences,2003,26(1):11-25. doi: 10.1002/mma.340
    [14] Vitillaro E. A potential well theory for the wave equation with nonlinear source and boundary damping terms[J].Glasgow Mathematical Journal,2002,44(3):375-395. doi: 10.1017/S0017089502030045
    [15] Ono K.On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation[J].Mathematical Methods inthe Applied Sciences,1997,20(2):151-177. doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
  • 加载中
计量
  • 文章访问数:  3206
  • HTML全文浏览量:  148
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-07-26
  • 修回日期:  2007-06-28
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回