Solvability of 2n-Order m-Point Boundary Value Problem at Resonance
-
摘要: 对具有共振的高阶多点边值问题进行研究.首先在具有2n-1阶连续导数的函数全体所成的空间X的子集上定义了指数为0的Fredholm算子L,并在X上定义了投影算子P,使得算子L在其定义域和P的核的交集上是可逆的.然后,在Lebesgue可积函数全体所成的空间Y上定义了投影算子Q,使得L的逆与I-Q及非线性项f的复合是紧算子,其中,I是Y上的恒同算子A·D2最后通过赋予f一定的增长条件,利用Mawhin的重合度理论,证明了具有共振的2n阶m点边值问题至少存在一个解,并给出一个例子验证这一结果.在这里不要求f具有连续性.
-
关键词:
- 共振 /
- Fredholm算子 /
- 多点边值问题 /
- 重合度理论
Abstract: The higher order multiple point boundary value problem at resonance is studied. Firstly, a Fredholm operator L with index zero and a projector operator P are defined in the subset of X and in X, respectively, such that L is invertible in the intersection of the domain of L and the kernel of P, where X is the space of functions whose (2n-1) th order derivatives are continuous. Secondly, a projector operator Q is defined in the Lebesgue integrable functions. space Y such that the composition of the inverse operator of L, I-Q and the nonlinear term f is compact, where I is the identity mapping in Y. Finally, imposing growth conditions on f, the existence of at least one solution for the 2n-order m-point boundary value problem at resonance is obtained by using coincidence degree theory of Mawhin. An example is given to demonstrate the result. The interest is that the nonlinear term f may be noncontinuous. -
[1] Feng W,Webb J R L.Solvability of m-point boundary value problems with nonlinear growth[J].J Math Anal Appl,1997,212(2):467-480. doi: 10.1006/jmaa.1997.5520 [2] Feng W,Webb J R L.Solvability of three-point boundary value problems at resonance[J].Nonlinear Anal Theory Meth Appl,1997,30(6):3227-3238. doi: 10.1016/S0362-546X(96)00118-6 [3] Liu B.Solvability of multi-point boundary value problem at resonance (Ⅱ)[J].Appl Math Comput,2003,136(2/3):353-377. doi: 10.1016/S0096-3003(02)00050-4 [4] Gupta C P. Solvability of multi-point boundary value problem at resonance[J].Results Math,1995,28(1):270-276. [5] Gupta C P.A second order m-point boundary value problem at resonance[J]. Nonlinear Anal Theory Meth Appl,1995,24(10):1483-1489. doi: 10.1016/0362-546X(94)00204-U [6] Gupta C P. Existence theorems for a second order m-point boundary value problem at resonance[J].Int J Math Sci,1995,18(2):705-710. doi: 10.1155/S0161171295000901 [7] Prezeradzki B,Stanczy R.Solvability of a multi-point boundary value problem at resonance[J].J Math Anal Appl,2001,264(2):253-261. doi: 10.1006/jmaa.2001.7616 [8] Ma R Y.Multiplicity results for a third order boundary value problem at resonance[J].Nonlinear Anal Theory Meth Appl,1998,32(4):493-499. doi: 10.1016/S0362-546X(97)00494-X [9] Gupta C P.On a third-order boundary value problem at resonance[J].Differential Integral Equations,1989,2(1):1-12. [10] Nagle R K,Pothoven K L.On a third-order nonlinear boundary value problem at resonance[J].J Math Anal Appl,1995,195(1):148-159. doi: 10.1006/jmaa.1995.1348 [11] Lu S,Ge W.On the existence of m-point boundary value problem at resonance for higher order differential equation[J].J Math Anal Appl,2003,287(2):522-539. doi: 10.1016/S0022-247X(03)00567-5 [12] Liu Y,Ge W.Solvability of nonlocal boundary value problems for ordinary differential equations of higher order[J].Nonlinear Anal,2004,57(3):435-458. doi: 10.1016/j.na.2004.02.023 [13] Mawhin J.Topological degree methods in nonlinear boundary value problems[A].In:NSF-CBMS Regional Conference Series in Mathematics[C].Vol 40.Providence:American Mathematical Society,RI,1979.
计量
- 文章访问数: 2626
- HTML全文浏览量: 157
- PDF下载量: 758
- 被引次数: 0