留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非对称各向同性张量函数导数的不变表示

王志乔 兑关锁

王志乔, 兑关锁. 一类非对称各向同性张量函数导数的不变表示[J]. 应用数学和力学, 2007, 28(9): 1115-1122.
引用本文: 王志乔, 兑关锁. 一类非对称各向同性张量函数导数的不变表示[J]. 应用数学和力学, 2007, 28(9): 1115-1122.
WANG Zhi-qiao, DUI Guan-suo. Basis-Free Expressions for the Derivatives of a Subclass of Nonsymmetric Isotropic Tensor Functions[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1115-1122.
Citation: WANG Zhi-qiao, DUI Guan-suo. Basis-Free Expressions for the Derivatives of a Subclass of Nonsymmetric Isotropic Tensor Functions[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1115-1122.

一类非对称各向同性张量函数导数的不变表示

基金项目: 国家自然科学基金委员会、二滩水电开发有限责任公司雅砻江水电开发联合研究基金资助项目(50539030)
详细信息
    作者简介:

    王志乔(1978- ),男,河北人,博士;兑关锁(1963- ),男,河南人,副教授(联系人.Tel:+86-10-51688437;Fax:+86-10-51682094;E-mail:gsdui@center.njtu.edu.cn).

  • 中图分类号: O331;O183.2

Basis-Free Expressions for the Derivatives of a Subclass of Nonsymmetric Isotropic Tensor Functions

  • 摘要: 将Dui和Chen于2004年提出的求解对称各向同性张量函数导数的方法推广到一类满足可交换条件的非对称各向同性张量函数情况,此类函数比以往研究的更具一般性.在有3个不同特征根时,由可交换性引进张量函数相对应的标量函数,进而求得此类非对称各向同性张量函数及其导数的不变表示形式.在2或3重特征根时,利用求极限的办法给出此类张量函数及其导数的表示形式.
  • [1] Miehe C. Exponential map algorithm for stress updates in anisotropic multiplicative elasto-plasticity for single crystals[J].International Journal for Numerical Methods in Engineering,1996,39:3367-3390. doi: 10.1002/(SICI)1097-0207(19961015)39:19<3367::AID-NME4>3.0.CO;2-7
    [2] Sansour C, Kollmann F G. Large viscoplastic deformations of shells. Theory and finite element formulation[J].Computational Mechanics,1998,21:512-525. doi: 10.1007/s004660050329
    [3] Steinmann P, Stein E. On the numerical treatment and analysis of finite deformation ductile single crystal plasticity[J].Computer Methods in Applied Mechanics and Engineering,1996,129:235-254. doi: 10.1016/0045-7825(95)00913-2
    [4] Balendran B, Nemat-Nasser S. Derivative of a function of a nonsymmetric second-order tensor[J].Quarterly of Applied Mathematics,1996,54: 583-600.
    [5] De Souza Neto E A. The exact derivative of the exponential of a nonsymmetric tensor[J].Computer Methods in Applied Mechanics and Engineering,2001,190:2377-2383. doi: 10.1016/S0045-7825(00)00241-3
    [6] Itskov M, Aksel N. A closed-form representation for the derivative of non-symmetric tensor power series[J].International Journal of Solids and Structures,2002,39:5963-5978. doi: 10.1016/S0020-7683(02)00464-X
    [7] Itskov M. Application of the Dunford-Taylor integral to isotropic tensor functions and their derivatives[J].Proceedings of the Royal Society of London. Ser A,Mathematical & Physical Sciences,2003,459: 1449-1457.
    [8] Itskov M. Computation of the exponential and other isotropic tensor functions and their derivatives[J].Computer Methods in Applied Mechanics and Engineering,2003,192:3985-3999. doi: 10.1016/S0045-7825(03)00397-9
    [9] Lu J. Exact expansions of arbitrary tensor functions F(A) and their derivatives[J].International Journal of Solids and Structures,2004,41:337-349. doi: 10.1016/j.ijsolstr.2003.10.004
    [10] Dui G S. Discussion on ‘Exact expansions of arbitrary tensor functions F(A) and their derivatives’[J].International Journal of Solids and Structures,2005,42:4514-4515. doi: 10.1016/j.ijsolstr.2004.12.020
    [11] Dui G S, Ren Q, Shen Z. Time rates of Hill's strain tensors[J].Journal of Elasticity,1999,54:129-140. doi: 10.1023/A:1007603221060
    [12] WANG Zi-qiao,DIU Guan-sun.On the derivatives of a subclass of isotropic tensor functions of nonsymmetric tensor[J].International Journal of Solids and Structures,2007.
    [13] Dui G S, Chen Y C.Basis-free representations for the stress rate of isotopic materials[J].International Journal of Solids and Structures,2004,41:4845-4860. doi: 10.1016/j.ijsolstr.2004.03.003
    [14] Del Piero G. Some properties of the set of 4th-order tensors, with application to elasticity[J].Journal of Elasticity,1979,9:245-261. doi: 10.1007/BF00041097
    [15] Kintzel O, Basar Y. Fourth-order tensors - tensor differentiation with applications to continuum mechanics. Part I: classical tensor analysis[J].Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM),2006,86:291-311. doi: 10.1002/zamm.200410242
    [16] Dui G S, Wang Z D, Jin M. Derivatives on the isotropic tensor functions[J].Science in China Ser G,Physics, Mechanics & Astronomy,2006,49:321-334.
    [17] Ogden R.Non-linear Elastic Deformations[M].Ellis Horwood: Chichester, 1984.
    [18] 黄筑平. 连续介质力学基础[M].北京:高等教育出版社, 2003.
  • 加载中
计量
  • 文章访问数:  2779
  • HTML全文浏览量:  188
  • PDF下载量:  978
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-11-03
  • 修回日期:  2007-03-30
  • 刊出日期:  2007-09-15

目录

    /

    返回文章
    返回